論文の概要: DeepONet for Solving Nonlinear Partial Differential Equations with Physics-Informed Training
- arxiv url: http://arxiv.org/abs/2410.04344v2
- Date: Wed, 22 Jan 2025 21:11:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:55:08.013730
- Title: DeepONet for Solving Nonlinear Partial Differential Equations with Physics-Informed Training
- Title(参考訳): 物理インフォームドトレーニングによる非線形偏微分方程式の解法のためのDeepONet
- Authors: Yahong Yang,
- Abstract要約: 非線形偏微分方程式(PDE)の解法における演算子学習、特にDeepONetの利用について検討する。
本研究では,物理インフォームドトレーニングにおけるDeepONetの性能について検討し,(1)ディープブランチとトランクネットワークの近似能力,(2)ソボレフノルムの一般化誤差の2点に着目した。
- 参考スコア(独自算出の注目度): 2.44755919161855
- License:
- Abstract: In this paper, we investigate the use of operator learning, specifically DeepONet, for solving nonlinear partial differential equations (PDEs). Unlike conventional function learning methods that require training separate neural networks for each PDE, operator learning enables generalization across different PDEs without retraining. This study examines the performance of DeepONet in physics-informed training, focusing on two key aspects: (1) the approximation capabilities of deep branch and trunk networks, and (2) the generalization error in Sobolev norms. Our results demonstrate that deep branch networks provide substantial performance improvements, while trunk networks achieve optimal results when kept relatively simple. Furthermore, we derive a bound on the generalization error of DeepONet for solving nonlinear PDEs by analyzing the Rademacher complexity of its derivatives in terms of pseudo-dimension. This work bridges a critical theoretical gap by delivering rigorous error estimates. This paper fills a theoretical gap by providing error estimations for a wide range of physics-informed machine learning models and applications.
- Abstract(参考訳): 本稿では,非線形偏微分方程式(PDE)の解法として,演算子学習,特にDeepONetを用いて検討する。
各PDEに対して個別のニューラルネットワークのトレーニングを必要とする従来の関数学習方法とは異なり、オペレータ学習は再トレーニングすることなく、異なるPDEをまたいだ一般化を可能にする。
本研究では,物理インフォームドトレーニングにおけるDeepONetの性能について検討し,(1)ディープブランチとトランクネットワークの近似能力,(2)ソボレフノルムの一般化誤差の2点に着目した。
提案手法は,幹ネットワークが比較的シンプルに維持した場合に最適な結果が得られるのに対して,深部分岐ネットワークは大幅な性能向上をもたらすことを示す。
さらに,非線型PDEを解くためのDeepONetの一般化誤差にもとづいて,その微分のラデマッハ複雑性を擬次元で解析する。
この研究は厳密な誤差推定をすることで、批判的な理論的ギャップを埋める。
本稿では,幅広い物理インフォームド機械学習モデルと応用のための誤差推定を提供することにより,理論的ギャップを埋める。
関連論文リスト
- Quantifying Training Difficulty and Accelerating Convergence in Neural Network-Based PDE Solvers [9.936559796069844]
ニューラルネットワークに基づくPDEソルバのトレーニングダイナミクスについて検討する。
統一分割(PoU)と分散スケーリング(VS)という2つの手法が有効ランクを高めていることがわかった。
PINNやDeep Ritz、オペレータ学習フレームワークのDeepOnetなど、人気のあるPDE解決フレームワークを使用した実験では、これらのテクニックが収束を継続的に加速することを確認した。
論文 参考訳(メタデータ) (2024-10-08T19:35:19Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Nearly Optimal VC-Dimension and Pseudo-Dimension Bounds for Deep Neural
Network Derivatives [13.300625539460217]
本稿では, ほぼ最適なVapnik-Chervonenkis次元(VC次元)の問題とディープニューラルネットワーク(DNN)の導関数の擬次元推定について述べる。
この2つの重要な応用は,1) ソボレフ空間におけるDNNのほぼ密近似値の確立,2) 関数導関数を含む損失関数を持つ機械学習手法の一般化誤差のキャラクタリゼーションである。
論文 参考訳(メタデータ) (2023-05-15T09:10:12Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Generic bounds on the approximation error for physics-informed (and)
operator learning [7.6146285961466]
本稿では,物理インフォームドニューラルネットワーク(PINN)とDeepONetsやFNOといった演算子学習アーキテクチャの近似誤差の厳密な境界を導出するフレームワークを提案する。
これらの境界は、PINNと(物理インフォームド)ディープノネットやFNOが、一般偏微分方程式(PDE)の根底にある解や解作用素を効率的に近似することを保証している。
論文 参考訳(メタデータ) (2022-05-23T15:40:33Z) - Multi-resolution partial differential equations preserved learning
framework for spatiotemporal dynamics [11.981731023317945]
物理インフォームドディープラーニング(PiDL)は、物理原理をモデルに組み込むことによって、これらの課題に対処する。
我々は、ニューラルネットワークアーキテクチャに離散化された支配方程式を焼いて、物理の事前知識を活用することを提案する。
離散化されたPDEを畳み込み残差ネットワークを介して多分解能設定に埋め込むことにより、一般化可能性と長期予測を大幅に改善する。
論文 参考訳(メタデータ) (2022-05-09T01:27:58Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Improved architectures and training algorithms for deep operator
networks [0.0]
演算子学習技術は無限次元バナッハ空間間の写像を学習するための強力なツールとして登場した。
我々は,ニューラルタンジェントカーネル(NTK)理論のレンズを用いて,ディープオペレータネットワーク(DeepONets)のトレーニングダイナミクスを解析した。
論文 参考訳(メタデータ) (2021-10-04T18:34:41Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。