論文の概要: PhysicsCorrect: A Training-Free Approach for Stable Neural PDE Simulations
- arxiv url: http://arxiv.org/abs/2507.02227v1
- Date: Thu, 03 Jul 2025 01:22:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:15.471003
- Title: PhysicsCorrect: A Training-Free Approach for Stable Neural PDE Simulations
- Title(参考訳): 物理コレクト:安定型ニューラルPDEシミュレーションのためのトレーニング不要アプローチ
- Authors: Xinquan Huang, Paris Perdikaris,
- Abstract要約: 予測ステップ毎にPDE整合性を強制する,トレーニング不要な修正フレームワークであるNyberCorrectを提案する。
私たちの重要なイノベーションは、オフラインのウォームアップフェーズでJacobianとその擬似逆をプリ計算する効率的なキャッシュ戦略です。
3つの代表的なPDEシステムにおいて、物理コレクトは予測誤差を最大100倍に削減し、無視可能な推論時間を加算する。
- 参考スコア(独自算出の注目度): 4.7903561901859355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have emerged as powerful surrogates for solving partial differential equations (PDEs), offering significant computational speedups over traditional methods. However, these models suffer from a critical limitation: error accumulation during long-term rollouts, where small inaccuracies compound exponentially, eventually causing complete divergence from physically valid solutions. We present PhysicsCorrect, a training-free correction framework that enforces PDE consistency at each prediction step by formulating correction as a linearized inverse problem based on PDE residuals. Our key innovation is an efficient caching strategy that precomputes the Jacobian and its pseudoinverse during an offline warm-up phase, reducing computational overhead by two orders of magnitude compared to standard correction approaches. Across three representative PDE systems -- Navier-Stokes fluid dynamics, wave equations, and the chaotic Kuramoto-Sivashinsky equation -- PhysicsCorrect reduces prediction errors by up to 100x while adding negligible inference time (under 5\%). The framework integrates seamlessly with diverse architectures including Fourier Neural Operators, UNets, and Vision Transformers, effectively transforming unstable neural surrogates into reliable simulation tools that bridge the gap between deep learning's computational efficiency and the physical fidelity demanded by practical scientific applications.
- Abstract(参考訳): ニューラルネットワークは偏微分方程式(PDE)を解くための強力なサロゲートとして登場し、従来の手法よりも計算速度が大幅に向上した。
しかし、これらのモデルには限界がある: 長期のロールアウト中にエラーが蓄積され、小さな不正確な値が指数関数的に合成され、最終的には物理的に有効な解から完全に分岐する。
我々は,PDE残差に基づく線形化逆問題として補正を定式化することにより,各予測ステップでPDE整合性を強制する学習自由補正フレームワークであるNycolrectを提案する。
我々の重要な革新は、ジャコビアンとその擬似逆をオフラインのウォームアップフェーズで前処理する効率的なキャッシュ戦略であり、標準的な補正手法と比較して計算オーバーヘッドを2桁削減する。
3つの代表的なPDEシステム - Navier-Stokes流体力学、波動方程式、カオスな倉本-シヴァシンスキー方程式 -- PhysicsCorrectは、無視可能な推論時間(5倍以下)を加えながら、予測誤差を最大100倍に削減する。
このフレームワークは、Fourier Neural Operators、UNets、Vision Transformersなどの多様なアーキテクチャとシームレスに統合され、不安定なニューラルネットワークを信頼性の高いシミュレーションツールに変換することで、ディープラーニングの計算効率と、実用的な科学的応用によって要求される物理的忠実さのギャップを埋めることができる。
関連論文リスト
- Accelerating Multiscale Modeling with Hybrid Solvers: Coupling FEM and Neural Operators with Domain Decomposition [3.0635300721402228]
本研究では、PI-NOと有限要素法(FE)をドメイン分解を通じて統合する新しいハイブリッドフレームワークを提案する。
フレームワークの有効性は、静的、準静的、動的レシエーションにまたがる様々な問題で検証されている。
本研究は,(1)サブドメインインタフェース間の解の連続性を維持すること,(2)微細メッシュ要求を排除して計算コストを削減すること,(3)時間依存シミュレーションにおける誤差の蓄積を緩和すること,(4)物理現象の進化への自動適応を可能にすること,である。
論文 参考訳(メタデータ) (2025-04-15T16:54:04Z) - Enabling Automatic Differentiation with Mollified Graph Neural Operators [75.3183193262225]
本稿では,任意の測地上での自動微分とエンフェクサクタクティック勾配を計算するための最初の手法であるモリファイドグラフニューラル演算子 (mGNO) を提案する。
正規格子上のPDEの例では、mGNOとオートグレードの組み合わせにより、L2相対データの誤差は有限差に比べて20倍減少した。
また、物理損失のみを使用し、有限差分に必要な分解能よりもはるかに低い精度で、非構造化点雲上のPDEをシームレスに解くことができる。
論文 参考訳(メタデータ) (2025-04-11T06:16:30Z) - Implicit Neural Differential Model for Spatiotemporal Dynamics [5.1854032131971195]
In-PiNDiffは、安定時間力学のための新しい暗黙の物理積分型ニューラル微分可能解法である。
深い平衡モデルにインスパイアされたIm-PiNDiffは、暗黙の固定点層を用いて状態を前進させ、堅牢な長期シミュレーションを可能にする。
Im-PiNDiffは優れた予測性能、数値安定性の向上、メモリとコストの大幅な削減を実現している。
論文 参考訳(メタデータ) (2025-04-03T04:07:18Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Multi-resolution partial differential equations preserved learning
framework for spatiotemporal dynamics [11.981731023317945]
物理インフォームドディープラーニング(PiDL)は、物理原理をモデルに組み込むことによって、これらの課題に対処する。
我々は、ニューラルネットワークアーキテクチャに離散化された支配方程式を焼いて、物理の事前知識を活用することを提案する。
離散化されたPDEを畳み込み残差ネットワークを介して多分解能設定に埋め込むことにより、一般化可能性と長期予測を大幅に改善する。
論文 参考訳(メタデータ) (2022-05-09T01:27:58Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。