論文の概要: Physics-Constrained Fine-Tuning of Flow-Matching Models for Generation and Inverse Problems
- arxiv url: http://arxiv.org/abs/2508.09156v1
- Date: Tue, 05 Aug 2025 09:32:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-14 20:42:00.562572
- Title: Physics-Constrained Fine-Tuning of Flow-Matching Models for Generation and Inverse Problems
- Title(参考訳): 生成問題と逆問題に対するフローマッチングモデルの物理制約による微調整
- Authors: Jan Tauberschmidt, Sophie Fellenz, Sebastian J. Vollmer, Andrew B. Duncan,
- Abstract要約: 本稿では、物理制約を強制し、科学的システムにおける逆問題を解決するための微調整フローマッチング生成モデルの枠組みを提案する。
我々のアプローチは、生成的モデリングと科学的推論を橋渡し、シミュレーション強化された発見と物理システムのデータ効率のモデリングのための新たな道を開く。
- 参考スコア(独自算出の注目度): 3.3811247908085855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a framework for fine-tuning flow-matching generative models to enforce physical constraints and solve inverse problems in scientific systems. Starting from a model trained on low-fidelity or observational data, we apply a differentiable post-training procedure that minimizes weak-form residuals of governing partial differential equations (PDEs), promoting physical consistency and adherence to boundary conditions without distorting the underlying learned distribution. To infer unknown physical inputs, such as source terms, material parameters, or boundary data, we augment the generative process with a learnable latent parameter predictor and propose a joint optimization strategy. The resulting model produces physically valid field solutions alongside plausible estimates of hidden parameters, effectively addressing ill-posed inverse problems in a data-driven yet physicsaware manner. We validate our method on canonical PDE benchmarks, demonstrating improved satisfaction of PDE constraints and accurate recovery of latent coefficients. Our approach bridges generative modelling and scientific inference, opening new avenues for simulation-augmented discovery and data-efficient modelling of physical systems.
- Abstract(参考訳): 本稿では、物理制約を強制し、科学的システムにおける逆問題を解決するための微調整フローマッチング生成モデルの枠組みを提案する。
低忠実度または観測データに基づいて訓練されたモデルから、偏微分方程式(PDE)の弱形式残差を最小限に抑え、基礎となる学習分布を歪ませることなく、物理的整合性や境界条件への固着を促進できる微分後訓練法を適用する。
情報源条件, 材料パラメータ, 境界データなどの未知の物理入力を推定するために, 学習可能な潜在パラメータ予測器を用いて生成過程を増強し, 共同最適化戦略を提案する。
得られたモデルは、隠れたパラメータの妥当な推定と並んで、物理的に有効なフィールドソリューションを生成し、データ駆動型でも物理的に認識可能な方法で、不適切な逆問題に効果的に対処する。
本手法を標準PDEベンチマークで検証し,PDE制約の満足度の向上と潜時係数の精度向上を実証した。
我々のアプローチは、生成的モデリングと科学的推論を橋渡し、シミュレーション強化された発見と物理システムのデータ効率のモデリングのための新たな道を開く。
関連論文リスト
- Hybrid Generative Modeling for Incomplete Physics: Deep Grey-Box Meets Optimal Transport [48.06072022424773]
多くの実世界の系は、方程式の欠落や未知の項にのみ記述される。
これにより、物理モデルの分布は真のデータ生成過程(DGP)とは異なる。
非完全物理モデルを強化するために, 深層グレーボックスモデルと最適輸送法を組み合わせた新しいハイブリッド生成モデルを提案する。
論文 参考訳(メタデータ) (2025-06-27T13:23:27Z) - Flow Matching Meets PDEs: A Unified Framework for Physics-Constrained Generation [21.321570407292263]
本稿では,PDE残差と代数的関係の両方の物理制約をフローマッチングの対象に組み込む生成フレームワークである物理ベースフローマッチングを提案する。
提案手法では,FMよりも高精度な物理残差を最大8倍に抑えながら,分布精度では既存アルゴリズムよりも明らかに優れていることを示す。
論文 参考訳(メタデータ) (2025-06-10T09:13:37Z) - Constrained Synthesis with Projected Diffusion Models [47.56192362295252]
本稿では, 制約や物理原理の遵守を満足し, 証明する上で, 生成拡散プロセスへのアプローチを紹介する。
提案手法は, 従来の生成拡散過程を制約分布問題として再キャストし, 制約の順守を保証する。
論文 参考訳(メタデータ) (2024-02-05T22:18:16Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
この研究は生成モデルの到達範囲を物理的問題領域に拡張する。
基礎となるPDEとの整合性を促進するための効率的なアプローチを提案する。
各種物理課題におけるスコアベース生成モデルの可能性と汎用性を示す。
論文 参考訳(メタデータ) (2023-12-16T19:56:10Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
本稿では,PDEのパラメータ・ツー・ソリューション(前方)と解・ツー・パラメータ(逆)マップを同時に学習する物理駆動型ディープ潜在変数モデル(PDDLVM)を提案する。
提案フレームワークは、観測データをシームレスに統合し、逆問題を解決するとともに、生成モデルを構築するために容易に拡張できる。
有限要素離散パラメトリックPDE問題に対して,本手法の有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-08-09T15:40:53Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Physics-Guided Discovery of Highly Nonlinear Parametric Partial
Differential Equations [29.181177365252925]
科学データに適合する偏微分方程式(PDE)は、説明可能なメカニズムで物理法則を表現することができる。
本稿では,観測知識を符号化し,基本的な物理原理と法則を取り入れた物理誘導学習法を提案する。
実験の結果,提案手法はデータノイズに対してより頑健であり,推定誤差を大きなマージンで低減できることがわかった。
論文 参考訳(メタデータ) (2021-06-02T11:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。