論文の概要: Functional Analysis of Variance for Association Studies
- arxiv url: http://arxiv.org/abs/2508.11069v1
- Date: Thu, 14 Aug 2025 21:02:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:23.672933
- Title: Functional Analysis of Variance for Association Studies
- Title(参考訳): 学会研究における変数の機能分析
- Authors: Olga A. Vsevolozhskaya, Dmitri V. Zaykin, Mark C. Greenwood, Changshuai Wei, Qing Lu,
- Abstract要約: 本研究では,ゲノム領域の配列変異と定性特性の関連性をテストするための分散法(FANOVA)の関数解析を提案する。
FANOVAには、(1)一般と稀の両方を含む遺伝子変異のジョイント効果を検査し、(2)リンケージ不均衡と遺伝的位置情報を完全に活用し、(3)保護的またはリスク増進的な因果変異を許容する、という多くの利点がある。
- 参考スコア(独自算出の注目度): 0.624151172311885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While progress has been made in identifying common genetic variants associated with human diseases, for most of common complex diseases, the identified genetic variants only account for a small proportion of heritability. Challenges remain in finding additional unknown genetic variants predisposing to complex diseases. With the advance in next-generation sequencing technologies, sequencing studies have become commonplace in genetic research. The ongoing exome-sequencing and whole-genome-sequencing studies generate a massive amount of sequencing variants and allow researchers to comprehensively investigate their role in human diseases. The discovery of new disease-associated variants can be enhanced by utilizing powerful and computationally efficient statistical methods. In this paper, we propose a functional analysis of variance (FANOVA) method for testing an association of sequence variants in a genomic region with a qualitative trait. The FANOVA has a number of advantages: (1) it tests for a joint effect of gene variants, including both common and rare; (2) it fully utilizes linkage disequilibrium and genetic position information; and (3) allows for either protective or risk-increasing causal variants. Through simulations, we show that FANOVA outperform two popularly used methods - SKAT and a previously proposed method based on functional linear models (FLM), - especially if a sample size of a study is small and/or sequence variants have low to moderate effects. We conduct an empirical study by applying three methods (FANOVA, SKAT and FLM) to sequencing data from Dallas Heart Study. While SKAT and FLM respectively detected ANGPTL 4 and ANGPTL 3 associated with obesity, FANOVA was able to identify both genes associated with obesity.
- Abstract(参考訳): 人間の病気に関連する一般的な遺伝的変異の同定は進歩しているが、一般的な複雑な疾患のほとんどでは、同定された遺伝的変異は遺伝的変異のごく一部を占めるのみである。
複雑な疾患に先立つ、未知の遺伝子変異を見つけることには、依然として課題がある。
次世代のシークエンシング技術の進歩により、シークエンシング研究は遺伝子研究において一般的になっている。
進行中のゲノムシークエンシングと全ゲノムシークエンシングの研究は、大量のシークエンシング変異を発生させ、研究者が人間の病気における自身の役割を包括的に調査することを可能にする。
新しい疾患関連変異の発見は、強力で計算学的に効率的な統計手法を利用することで、さらに強化することができる。
本稿では,ゲノム領域の配列変異と定性特性の関連性をテストするために,分散法(FANOVA)の関数解析を提案する。
FANOVAには、(1)普通と稀の両方を含む遺伝子変異のジョイント効果を検査し、(2)リンケージ不均衡と遺伝的位置情報を完全に活用し、(3)保護的またはリスク増進的な因果変異を許容する、という多くの利点がある。
シミュレーションにより,FANOVA は機能線形モデル (FLM) に基づくSKAT と従来提案されていた手法よりも優れており,特に研究のサンプルサイズが小さく,シーケンスの変異が低~中程度の効果を持つ場合,より優れた性能を示すことを示す。
ダラス・ハートスタディのデータ解析にFANOVA, SKAT, FLMの3つの手法を適用し, 実験的検討を行った。
SKATとFLMはそれぞれ肥満に関連するANGPTL4とANGPTL3を検出したが、FANOVAは肥満に関連する両方の遺伝子を同定することができた。
関連論文リスト
- Survey and Improvement Strategies for Gene Prioritization with Large Language Models [61.24568051916653]
大規模言語モデル (LLM) は, 医学検査において良好に機能しているが, 希少な遺伝疾患の診断における有効性は評価されていない。
表現型と可溶性レベルに基づいて, マルチエージェントとヒトフェノタイプオントロジー(HPO)を分類した。
ベースラインでは、GPT-4は他のLLMよりも優れており、因果遺伝子を正しくランク付けする際の精度は30%近く向上した。
論文 参考訳(メタデータ) (2025-01-30T23:03:03Z) - Interpreting artificial neural networks to detect genome-wide association signals for complex traits [0.0]
我々は人工ニューラルネットワークを訓練し、シミュレーションと実際のジェノタイプフェノタイプデータセットの両方を用いて複雑な特徴を予測する。
統合失調症に合併した多発性座位を指摘された。
論文 参考訳(メタデータ) (2024-07-26T15:20:42Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
タンパク質の熱安定性を正確に予測する能力は、様々なサブフィールドや生化学への応用において重要である。
タンパク質配列と構造的特徴を統合したESMによる効率的なアプローチを導入し, 単一点突然変異によるタンパク質の熱安定性変化を予測する。
論文 参考訳(メタデータ) (2023-12-07T03:25:49Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
ゲノムワイド・アソシエーション(GWAS)は、疾患に感受性のある遺伝的変数を同定することができる。
遺伝的効果に絡み合った遺伝的変数は、しばしば低い効果サイズを示す。
本稿では,FCSNet(Feature Co-Selection Network)という,GWASのための新しい特徴選択機構を提案する。
論文 参考訳(メタデータ) (2023-08-12T01:28:26Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - SNP2Vec: Scalable Self-Supervised Pre-Training for Genome-Wide
Association Study [48.75445626157713]
SNP2Vecは、SNPを理解するためのスケーラブルな自己教師付き事前学習手法である。
本研究では,SNP2Vecを用いて時系列ゲノミクスモデリングを行う。
中国コホートにおけるアルツハイマー病のリスク予測におけるアプローチの有効性について検討した。
論文 参考訳(メタデータ) (2022-04-14T01:53:58Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
56個の脳画像QTを用いてSNPを予測する機械学習モデルを学習した。
アルツハイマー病(AD)リスク遺伝子APOEのSNPは、ラスソとランダムな森林に対して最低のRMSEを有していた。
ランダム・フォレストは、線形モデルによって優先順位付けされなかったが、脳関連疾患と関連があることが知られている追加のSNPを特定した。
論文 参考訳(メタデータ) (2022-03-31T20:15:22Z) - Deep neural networks with controlled variable selection for the
identification of putative causal genetic variants [0.43012765978447565]
本稿では,遺伝的研究のための可変選択を制御した,アンサンブルを用いた解釈可能なニューラルネットワークモデルを提案する。
本手法の利点は,(1)遺伝的変異の非線形効果を柔軟にモデル化し,統計力を向上させること,(2)誤発見率を厳格に制御するために入力層内の複数のノックオフ,(3)重みパラメータやアクティベーションの数を大幅に減らし,計算効率を向上させること,を含む。
論文 参考訳(メタデータ) (2021-09-29T20:57:48Z) - Expectile Neural Networks for Genetic Data Analysis of Complex Diseases [3.0088453915399747]
本研究では、複雑な疾患の遺伝子データ解析のための予測型ニューラルネットワーク(ENN)法を開発した。
期待回帰と同様に、ERNは遺伝子変異と疾患の表現型との関係を包括的に把握する。
提案手法は,遺伝子変異と疾患表現型との間に複雑な関係がある場合,既存の予測回帰よりも優れていた。
論文 参考訳(メタデータ) (2020-10-26T21:07:40Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Recent Advances in Network-based Methods for Disease Gene Prediction [15.625526953844638]
ゲノムワイド・アソシエーション研究(GWAS)による疾患遺伝子関連研究は、研究者にとって困難な課題である。
代替の低コストの疾患遺伝子関連証拠を研究者に提供するため、計算アプローチが実施される。
分子ネットワークは病気の分子間の複雑な相互作用を捉えることができるため、疾患遺伝子関連予測において最も広く使われているデータの一つである。
論文 参考訳(メタデータ) (2020-07-19T14:13:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。