論文の概要: FNODE: Flow-Matching for data-driven simulation of constrained multibody systems
- arxiv url: http://arxiv.org/abs/2509.00183v2
- Date: Tue, 09 Sep 2025 00:50:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:26.956059
- Title: FNODE: Flow-Matching for data-driven simulation of constrained multibody systems
- Title(参考訳): FNODE: 制約付き多体システムのデータ駆動型シミュレーションのためのフローマッチング
- Authors: Hongyu Wang, Jingquan Wang, Dan Negrut,
- Abstract要約: Flow-Matching Neural Ordinary Differential Equation (FNODE)は、軌道データから直接加速ベクトル場を学習するフレームワークである。
FNODEは、従来のNeural ODEのボトルネックを表すODEソルバによるバックプロパゲーションの必要性を排除する。
我々はFNODEを,単発・三発のマススプリングダンパシステム,ダブル振り子,スライダークランク,カートポールなど,多種多様なベンチマークで評価した。
- 参考スコア(独自算出の注目度): 4.734933620065242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven modeling of constrained multibody systems faces two persistent challenges: high computational cost and limited long-term prediction accuracy. To address these issues, we introduce the Flow-Matching Neural Ordinary Differential Equation (FNODE), a framework that learns acceleration vector fields directly from trajectory data. By reformulating the training objective to supervise accelerations rather than integrated states, FNODE eliminates the need for backpropagation through an ODE solver, which represents a bottleneck in traditional Neural ODEs. Acceleration targets are computed efficiently using numerical differentiation techniques, including a hybrid Fast Fourier Transform (FFT) and Finite Difference (FD) scheme. We evaluate FNODE on a diverse set of benchmarks, including the single and triple mass-spring-damper systems, double pendulum, slider-crank, and cart-pole. Across all cases, FNODE consistently outperforms existing approaches such as Multi-Body Dynamic Neural ODE (MBD-NODE), Long Short-Term Memory (LSTM) networks, and Fully Connected Neural Networks (FCNN), demonstrating good accuracy, generalization, and computational efficiency.
- Abstract(参考訳): 制約付き多体システムのデータ駆動モデリングは、高い計算コストと限られた長期予測精度の2つの永続的な課題に直面している。
これらの問題に対処するために、軌道データから直接加速ベクトル場を学習するフレームワークであるFNODE(Flow-Matching Neural Ordinary Differential Equation)を導入する。
FNODEは、統合状態よりも加速を監督するためにトレーニング目標を再構築することで、従来のニューラルODEのボトルネックを表すODEソルバによるバックプロパゲーションの必要性を排除している。
高速フーリエ変換 (FFT) と有限差分法 (FD) を含む数値微分法を用いて, 加速目標を効率的に計算する。
我々はFNODEを,単発・三発のマススプリングダンパシステム,ダブル振り子,スライダークランク,カートポールなど,多種多様なベンチマークで評価した。
すべてのケースにおいて、FNODEは、Multi-Body Dynamic Neural ODE (MBD-NODE)、Long Short-Term Memory (LSTM) ネットワーク、FCNN (Fully Connected Neural Networks) といった既存のアプローチを一貫して上回り、精度、一般化、計算効率を示している。
関連論文リスト
- LaPON: A Lagrange's-mean-value-theorem-inspired operator network for solving PDEs and its application on NSE [8.014720523981385]
ラグランジュの平均値定理に着想を得た演算子ネットワークであるLaPONを提案する。
損失関数ではなく、ニューラルネットワークアーキテクチャに直接、事前の知識を組み込む。
LaPONは、高忠実度流体力学シミュレーションのためのスケーラブルで信頼性の高いソリューションを提供する。
論文 参考訳(メタデータ) (2025-05-18T10:45:17Z) - MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation [48.41289705783405]
マルチスケールタイムステップ(MultiPDENet)を用いたPDE組み込みネットワークを提案する。
特に,有限差分構造に基づく畳み込みフィルタを少数のパラメータで設計し,最適化する。
4階ランゲ・クッタ積分器を微細な時間スケールで備えた物理ブロックが確立され、PDEの構造を埋め込んで予測を導出する。
論文 参考訳(メタデータ) (2025-01-27T12:15:51Z) - Liquid Fourier Latent Dynamics Networks for fast GPU-based numerical simulations in computational cardiology [0.0]
複素測地上での高次非線形微分方程式の多スケールおよび多物理集合に対するパラメータ化時空間サロゲートモデルを作成するために、Latent Dynamics Networks(LDNets)の拡張を提案する。
LFLDNetは、時間的ダイナミクスのために神経学的にインスパイアされたスパースな液体ニューラルネットワークを使用し、時間進行のための数値ソルバの要求を緩和し、パラメータ、精度、効率、学習軌道の点で優れたパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2024-08-19T09:14:25Z) - FMint: Bridging Human Designed and Data Pretrained Models for Differential Equation Foundation Model [5.748690310135373]
我々は、人間設計モデルとデータ駆動モデルとのギャップを埋めるために、textbfFMintという新しいマルチモーダル基盤モデルを提案する。
FMintは、インコンテキスト学習を備えたデコーダのみのトランスフォーマーアーキテクチャに基づいて、数値データとテキストデータの両方を用いて、普遍的なエラー訂正スキームを学習する。
本研究は,従来の数値解法と比較して,精度と効率の両面から提案モデルの有効性を実証するものである。
論文 参考訳(メタデータ) (2024-04-23T02:36:47Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Green, Quantized Federated Learning over Wireless Networks: An
Energy-Efficient Design [68.86220939532373]
有限精度レベルは、固定精度フォーマットで重みとアクティベーションを定量化する量子ニューラルネットワーク(QNN)を使用して取得される。
提案するFLフレームワークは,ベースラインFLアルゴリズムと比較して,収束までのエネルギー消費量を最大70%削減することができる。
論文 参考訳(メタデータ) (2022-07-19T16:37:24Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - A memory-efficient neural ODE framework based on high-level adjoint
differentiation [4.063868707697316]
我々は、高レベル離散アルゴリズムの微分に基づく新しいニューラルODEフレームワーク、PNODEを提案する。
PNODEは他の逆精度の手法と比較してメモリ効率が最も高いことを示す。
論文 参考訳(メタデータ) (2022-06-02T20:46:26Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。