論文の概要: Look: AI at Work! - Analysing Key Aspects of AI-support at the Work Place
- arxiv url: http://arxiv.org/abs/2509.02274v1
- Date: Tue, 02 Sep 2025 12:51:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:04.029123
- Title: Look: AI at Work! - Analysing Key Aspects of AI-support at the Work Place
- Title(参考訳): Look: AI at Work! - 職場におけるAIサポートの重要側面の分析
- Authors: Stefan Schiffer, Anna Milena Rothermel, Alexander Ferrein, Astrid Rosenthal-von der Pütten,
- Abstract要約: 私たちは、アプリケーションが関心を持っているAIの分野に注目します。
これには、学習ベースのシステムのトレーニングにおける高品質なデータの重要性が含まれる。
心理学的要因の観点から、我々は、AI支援作業システムの開発について調査する研究質問を導出する。
- 参考スコア(独自算出の注目度): 39.146761527401424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present an analysis of technological and psychological factors of applying artificial intelligence (AI) at the work place. We do so for a number of twelve application cases in the context of a project where AI is integrated at work places and in work systems of the future. From a technological point of view we mainly look at the areas of AI that the applications are concerned with. This allows to formulate recommendations in terms of what to look at in developing an AI application and what to pay attention to with regards to building AI literacy with different stakeholders using the system. This includes the importance of high-quality data for training learning-based systems as well as the integration of human expertise, especially with knowledge-based systems. In terms of the psychological factors we derive research questions to investigate in the development of AI supported work systems and to consider in future work, mainly concerned with topics such as acceptance, openness, and trust in an AI system.
- Abstract(参考訳): 本稿では,人工知能(AI)を職場に適用する技術的・心理的要因の分析を行う。
私たちは、未来の職場や職場システムでAIが統合されるプロジェクトのコンテキストにおいて、12のアプリケーションケースに対してそうしています。
技術的な観点から言えば、私たちは主に、アプリケーションが関心を持っているAIの領域に注目します。
これにより、AIアプリケーションの開発において何に目を向けるべきか、システムを使用して異なる利害関係者でAIリテラシーを構築する上で何に注意を払うべきかという観点で、推奨を定式化することができる。
これには、学習ベースのシステムのトレーニングや、特に知識ベースのシステムとの人間の専門知識の統合のための高品質なデータの重要性が含まれる。
心理学的要因の観点から、我々は、AIをサポートする作業システムの開発について調査し、主にAIシステムの受容、開放性、信頼といったトピックに関する今後の研究を検討するための研究質問を導出します。
関連論文リスト
- AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
人々の行動、仕事、能力、類似性、または人間性を模倣するように設計されたAIシステムが増加している。
このようなAIシステムの研究、設計、展開、可用性は、幅広い法的、倫理的、その他の社会的影響に対する懸念を喚起している。
論文 参考訳(メタデータ) (2025-03-04T03:55:38Z) - A Roles-based Competency Framework for Integrating Artificial Intelligence (AI) in Engineering Courses [0.13154296174423616]
本稿では,AIを学際的な工学コースやカリキュラムに統合するためのフレームワークを提案する。
エンジニアリングにおけるAIの利用は、新興だが成長している分野である。
フレームワークの実装における課題について議論し、組込みアプローチの必要性を強調します。
論文 参考訳(メタデータ) (2024-09-28T19:13:14Z) - The Ethics of AI in Education [0.0]
人工知能の研究室ベースの科学から生きた人間の文脈への移行は多くの歴史的、社会文化的偏見、不平等、道徳的ジレンマに焦点を合わせている。
AIの幅広い倫理に関する疑問は、教育におけるAI(AIED)にも関係している。
AIEDは、その技術がユーザに与える影響、そのような技術が私たちが学び、教える方法の強化や変更にどのように使われるか、そして私たちが社会や個人として、教育の成果として価値あるものについて、さらなる課題を提起します。
論文 参考訳(メタデータ) (2024-03-22T11:41:37Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Human-Centered AI for Data Science: A Systematic Approach [48.71756559152512]
HCAI(Human-Centered AI)は、さまざまなヒューマンタスクをサポートするAI技術の設計と実装を目的とした研究活動である。
データサイエンス(DS)に関する一連の研究プロジェクトを使ってHCAIにどのようにアプローチするかをケーススタディとして紹介する。
論文 参考訳(メタデータ) (2021-10-03T21:47:13Z) - Competency Model Approach to AI Literacy: Research-based Path from
Initial Framework to Model [0.0]
AIリテラシーの研究は、これらのスキルを開発するための効果的で実用的なプラットフォームにつながる可能性がある。
我々は、AI教育の実用的で有用なツールとして、AIリテラシーを開発するための経路を提案し、提唱する。
論文 参考訳(メタデータ) (2021-08-12T15:42:32Z) - Measuring Ethics in AI with AI: A Methodology and Dataset Construction [1.6861004263551447]
我々は、AI技術のこのような新しい機能を使用して、AI測定能力を増強することを提案する。
我々は倫理的問題や関心事に関連する出版物を分類するモデルを訓練する。
私たちは、AIメトリクス、特に信頼できる公正なAIベースのツールや技術開発への彼らの貢献の意味を強調します。
論文 参考訳(メタデータ) (2021-07-26T00:26:12Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Software Engineering for AI-Based Systems: A Survey [8.550158373713906]
AIベースのシステムの構築、運用、保守のためのソフトウェアエンジニアリングのアプローチに関する合成知識は限られています。
AIベースのシステムのためのSEは、2018年以来、研究の2/3以上が出版されている新興研究領域です。
AIベースのシステムの最も研究された特性は信頼性と安全性です。
論文 参考訳(メタデータ) (2021-05-05T11:22:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。