論文の概要: Causal Multi-fidelity Surrogate Forward and Inverse Models for ICF Implosions
- arxiv url: http://arxiv.org/abs/2509.05510v1
- Date: Fri, 05 Sep 2025 21:39:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:03.555247
- Title: Causal Multi-fidelity Surrogate Forward and Inverse Models for ICF Implosions
- Title(参考訳): ICFインロジョンに対する因果多面体前向き及び逆モデル
- Authors: Tyler E. Maltba, Ben S. Southworth, Jeffrey R. Haack, Marc L. Klasky,
- Abstract要約: inertial confinement fusion (ICF) は、実験的な観測とシミュレーション入力パラメータに関する逆問題の解法を必要とする。
ここでは、ICFカプセルの重水素トリチウム(DT)界面を考察し、時間依存の放射温度駆動から界面の半径と速度のダイナミクスにマッピングする因果的、動的、多面的還元次代理を構築する。
我々は,高エネルギー密度システムの発見,設計,診断を加速するために,演算子学習,因果的アーキテクチャ,物理的帰納バイアスをいかに統合するかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continued progress in inertial confinement fusion (ICF) requires solving inverse problems relating experimental observations to simulation input parameters, followed by design optimization. However, such high dimensional dynamic PDE-constrained optimization problems are extremely challenging or even intractable. It has been recently shown that inverse problems can be solved by only considering certain robust features. Here we consider the ICF capsule's deuterium-tritium (DT) interface, and construct a causal, dynamic, multifidelity reduced-order surrogate that maps from a time-dependent radiation temperature drive to the interface's radius and velocity dynamics. The surrogate targets an ODE embedding of DT interface dynamics, and is constructed by learning a controller for a base analytical model using low- and high-fidelity simulation training data with respect to radiation energy group structure. After demonstrating excellent accuracy of the surrogate interface model, we use machine learning (ML) models with surrogate-generated data to solve inverse problems optimizing radiation temperature drive to reproduce observed interface dynamics. For sparse snapshots in time, the ML model further characterizes the most informative times at which to sample dynamics. Altogether we demonstrate how operator learning, causal architectures, and physical inductive bias can be integrated to accelerate discovery, design, and diagnostics in high-energy-density systems.
- Abstract(参考訳): 慣性凝縮核融合(ICF)の継続的な進歩は、実験的な観測に関する逆問題とシミュレーション入力パラメータ、そして設計最適化を必要とする。
しかし、そのような高次元動的PDE制約付き最適化問題は非常に困難または難解である。
近年、ある頑健な特徴を考慮すれば、逆問題も解決できることが示されている。
ここでは、ICFカプセルの重水素トリチウム(DT)界面を考察し、時間依存の放射温度駆動から界面の半径と速度のダイナミクスにマッピングする因果的、動的、多面的還元次代理を構築する。
このサロゲートはDT界面ダイナミクスのODE埋め込みを目標とし、放射エネルギー群構造に関する低・高忠実なシミュレーショントレーニングデータを用いてベース解析モデルのコントローラを学習して構築する。
代理インタフェースモデルの精度を良好に証明した後、サロゲート生成データを用いた機械学習(ML)モデルを用いて、放射温度を最適化し、観察されたインターフェースダイナミクスを再現する逆問題を解決する。
時間のスパーススナップショットでは、MLモデルはさらに、ダイナミックスをサンプリングする最も情報性の高い時間を特徴付ける。
また, 高エネルギー密度システムの発見, 設計, 診断を加速するために, 演算子学習, 因果的アーキテクチャ, 物理的帰納バイアスをいかに統合するかを実証する。
関連論文リスト
- Hybrid machine learning models based on physical patterns to accelerate CFD simulations: a short guide on autoregressive models [3.780691701083858]
本研究では,Long Short-Term Memory (LSTM) アーキテクチャと高次特異値分解を革新的に統合し,流体力学における低次モデリング(ROM)の複雑さに対処する。
この手法は、2次元および3次元のシリンダー流(2次元および3次元)を含む数値的および実験的なデータセットで試験される。
その結果、HOSVDは、異なるエラーメトリクスを用いて証明されたように、すべてのテストシナリオでSVDより優れていることが示された。
論文 参考訳(メタデータ) (2025-04-09T10:56:03Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - A Neural PDE Solver with Temporal Stencil Modeling [44.97241931708181]
最近の機械学習(ML)モデルでは、高解像度信号において重要なダイナミクスを捉えることが約束されている。
この研究は、低解像度のダウンサンプリング機能で重要な情報が失われることがしばしばあることを示している。
本稿では,高度な時系列シーケンスモデリングと最先端のニューラルPDEソルバの強みを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-16T06:13:01Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
複雑/マルチスケールシステムの集合力学を制御するための方程式/変数自由機械学習(EVFML)フレームワークを提案する。
提案手法は3段階からなる: (A) 高次元エージェントベースシミュレーション、機械学習(特に非線形多様体学習(DM))
創発力学の数値分岐解析を行うために方程式のない手法を用いる。
我々は,エージェントをベースとしたシミュレータを本質的で不正確に知られ,創発的なオープンループ定常状態に駆動する,データ駆動型組込み洗浄制御器を設計する。
論文 参考訳(メタデータ) (2022-07-12T18:16:22Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
剛体力学モデルの物理的に一貫した慣性パラメータを同定できる新しいハイブリッドモデルの定式化を提案する。
7自由度マニピュレータ上での最先端の逆動力学モデルに対する我々のアプローチを比較した。
論文 参考訳(メタデータ) (2022-05-27T07:39:28Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Learning Compact Physics-Aware Delayed Photocurrent Models Using Dynamic
Mode Decomposition [1.933681537640272]
半導体デバイスにおける放射誘起光電流は、複雑な物理モデルを用いてシミュレートすることができる。
複数の個別回路要素の詳細なモデルを評価することは、計算上不可能である。
本稿では,大規模回路シミュレーションで実装可能な小型遅延光電流モデルの学習手順を示す。
論文 参考訳(メタデータ) (2020-08-27T18:21:46Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。