論文の概要: Model-free algorithms for fast node clustering in SBM type graphs and application to social role inference in animals
- arxiv url: http://arxiv.org/abs/2509.15989v1
- Date: Fri, 19 Sep 2025 13:57:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 18:18:11.190342
- Title: Model-free algorithms for fast node clustering in SBM type graphs and application to social role inference in animals
- Title(参考訳): SBM型グラフにおける高速ノードクラスタリングのためのモデルフリーアルゴリズムと動物における社会的役割推論への応用
- Authors: Bertrand Cloez, Adrien Cotil, Jean-Baptiste Menassol, Nicolas Verzelen,
- Abstract要約: ブロックモデル(SBM)から生成されたグラフにおけるノードクラスタリングとパラメータ推論のための新しいモデルフリーアルゴリズム群を提案する。
我々は,提案手法を最先端技術に対してベンチマークし,推定誤差の低い計算時間を著しく高速化した。
行動生態学からの経験的ネットワークデータに適用することで,アルゴリズムの実用的妥当性を検証した。
- 参考スコア(独自算出の注目度): 26.41190755089919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel family of model-free algorithms for node clustering and parameter inference in graphs generated from the Stochastic Block Model (SBM), a fundamental framework in community detection. Drawing inspiration from the Lloyd algorithm for the $k$-means problem, our approach extends to SBMs with general edge weight distributions. We establish the consistency of our estimator under a natural identifiability condition. Through extensive numerical experiments, we benchmark our methods against state-of-the-art techniques, demonstrating significantly faster computation times with the lower order of estimation error. Finally, we validate the practical relevance of our algorithms by applying them to empirical network data from behavioral ecology.
- Abstract(参考訳): そこで我々は,Stochastic Block Model (SBM) から生成されたグラフのノードクラスタリングとパラメータ推論のための新しいモデルフリーアルゴリズム群を提案する。
ロイズアルゴリズムから$k$-means問題へのインスピレーションを得て、我々の手法は一般のエッジ重量分布を持つSBMにまで拡張される。
我々は,自然識別可能性条件下での推定器の整合性を確立する。
数値実験により,提案手法を最先端技術に対してベンチマークし,推定誤差の低い計算時間を著しく高速化することを示した。
最後に、行動生態学からの経験的ネットワークデータに適用することで、アルゴリズムの実践的妥当性を検証する。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Spectral Clustering for Directed Graphs via Likelihood Estimation on Stochastic Block Models [22.421702511126373]
ブロックモデルに対する統計的推測を利用して、有向グラフに対するスペクトルクラスタリングアルゴリズムの開発を導く。
我々は、スペクトル緩和の誤クラスタリング誤差に関する理論上界を確立し、この緩和に基づいて、有向グラフに対する新しい自己適応スペクトルクラスタリング法を導入する。
論文 参考訳(メタデータ) (2024-03-28T15:47:13Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Neural-prior stochastic block model [0.0]
我々は,コミュニティを,逆ではなくノード属性によって決定されるものとしてモデル化することを提案する。
本稿では,信念伝播と近似メッセージパッシングを組み合わせた統計物理に基づくアルゴリズムを提案する。
提案したモデルとアルゴリズムは理論とアルゴリズムのベンチマークとして利用できる。
論文 参考訳(メタデータ) (2023-03-17T14:14:54Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Bregman Power k-Means for Clustering Exponential Family Data [11.434503492579477]
我々は、ブレグマン発散の下でのハードクラスタリングに関する古典的な研究のアルゴリズム的進歩を橋渡しする。
ブレグマン発散のエレガントな性質は、単純で透明なアルゴリズムで閉形式更新を維持できる。
シミュレーション実験の徹底的な実証分析と降雨データに関するケーススタディを考察し,提案手法はガウス以外の様々なデータ設定において,既存のピア手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-06-22T06:09:54Z) - An iterative clustering algorithm for the Contextual Stochastic Block
Model with optimality guarantees [4.007017852999008]
本稿では,ノードの側情報を持つクラスタネットワークに対して,新たな反復アルゴリズムを提案する。
このアルゴリズムは文脈対称性ブロックモデルの下で最適であることを示す。
論文 参考訳(メタデータ) (2021-12-20T12:04:07Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
本稿では,グラフ畳み込みネットワークのためのコンパクトで問題固有のネットワークを,段階的に自動的に見つける手法を提案する。
骨格に基づく人体行動認識のための2つのデータセットの実験結果から,提案手法は競争力あるいはより優れた分類性能を有することが示された。
論文 参考訳(メタデータ) (2020-11-11T09:57:49Z) - Reliable Time Prediction in the Markov Stochastic Block Model [0.0]
成長するグラフの依存構造をMSBMを用いて検出する方法を示す。
本稿では,いわゆるリンク予測と協調フィルタリングの問題を解決する方法を提案する。
論文 参考訳(メタデータ) (2020-04-09T07:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。