論文の概要: AB-PINNs: Adaptive-Basis Physics-Informed Neural Networks for Residual-Driven Domain Decomposition
- arxiv url: http://arxiv.org/abs/2510.08924v1
- Date: Fri, 10 Oct 2025 02:13:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 00:38:48.01002
- Title: AB-PINNs: Adaptive-Basis Physics-Informed Neural Networks for Residual-Driven Domain Decomposition
- Title(参考訳): AB-PINNs:残差駆動領域分割のための適応基底物理インフォームドニューラルネットワーク
- Authors: Jonah Botvinick-Greenhouse, Wael H. Ali, Mouhacine Benosman, Saviz Mowlavi,
- Abstract要約: 適応基底物理インフォームドニューラルネットワーク(AB-PINN)を導入する。
AB-PINNは未知の解の本質的な特徴に動的に適応する。
複素偏微分方程式の解法におけるAB-PINNの有効性を示す包括的数値計算結果を提案する。
- 参考スコア(独自算出の注目度): 3.0307211002269443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce adaptive-basis physics-informed neural networks (AB-PINNs), a novel approach to domain decomposition for training PINNs in which existing subdomains dynamically adapt to the intrinsic features of the unknown solution. Drawing inspiration from classical mesh refinement techniques, we also modify the domain decomposition on-the-fly throughout training by introducing new subdomains in regions of high residual loss, thereby providing additional expressive power where the solution of the differential equation is challenging to represent. Our flexible approach to domain decomposition is well-suited for multiscale problems, as different subdomains can learn to capture different scales of the underlying solution. Moreover, the ability to introduce new subdomains during training helps prevent convergence to unwanted local minima and can reduce the need for extensive hyperparameter tuning compared to static domain decomposition approaches. Throughout, we present comprehensive numerical results which demonstrate the effectiveness of AB-PINNs at solving a variety of complex multiscale partial differential equations.
- Abstract(参考訳): 適応基底物理インフォームドニューラルネットワーク(AB-PINN)は,既存のサブドメインが未知の解の内在的特徴に動的に適応するPINNをトレーニングするための,ドメイン分解の新しいアプローチである。
従来のメッシュ精錬技術からインスピレーションを得て,高い残留損失の領域に新たなサブドメインを導入することで,トレーニング全体を通じてドメイン分解を改良し,微分方程式の解を表現しにくい表現力を与える。
ドメイン分解に対する柔軟なアプローチは、さまざまなサブドメインが基礎となるソリューションのさまざまなスケールを捉えることができるため、マルチスケール問題に適しています。
さらに、トレーニング中に新しいサブドメインを導入することで、不要なローカルミニマへの収束を防ぎ、静的ドメイン分解アプローチに比べて広範なハイパーパラメータチューニングの必要性を低減することができる。
本稿では, AB-PINN を多種多様な多スケール偏微分方程式の解法における有効性を示す総合的な数値計算結果を提案する。
関連論文リスト
- Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks [0.24578723416255746]
一般化されたインタフェース条件を持つ非重複型シュワルツ型領域分解法を提案する。
提案手法は,各サブドメイン内の物理と等価性制約付き人工ニューラルネットワーク(PECANN)を用いている。
ドメイン分解法では、ポアソン方程式とヘルムホルツ方程式の両方の解を学ぶことができる。
論文 参考訳(メタデータ) (2024-09-20T16:48:55Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - N-Adaptive Ritz Method: A Neural Network Enriched Partition of Unity for
Boundary Value Problems [1.2200609701777907]
本研究は,ニューラルネットワークによる境界値問題を解決するために,ニューラルネットワークに富んだユニティ分割(NN-PU)アプローチを導入する。
NNエンリッチメントは、事前訓練された特徴符号化NNブロックと未訓練NNブロックを組み合わせることで構成される。
提案手法は,従来のメッシュ法に比べて計算コストを低減しつつ,正確な解を提供する。
論文 参考訳(メタデータ) (2024-01-16T18:11:14Z) - A Generalized Schwarz-type Non-overlapping Domain Decomposition Method
using Physics-constrained Neural Networks [0.9137554315375919]
ニューラルネットワークに基づくメッシュレスシュワルツ型非重複領域分解を提案する。
この方法は、ラプラス方程式とヘルムホルツ方程式の両方に適用できる。
論文 参考訳(メタデータ) (2023-07-23T21:18:04Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。