論文の概要: Context-aware deep learning using individualized prior information reduces false positives in disease risk prediction and longitudinal health assessment
- arxiv url: http://arxiv.org/abs/2510.15591v1
- Date: Fri, 17 Oct 2025 12:38:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 20:17:34.618399
- Title: Context-aware deep learning using individualized prior information reduces false positives in disease risk prediction and longitudinal health assessment
- Title(参考訳): 個別化事前情報を用いた文脈認識深層学習は、疾患リスク予測および縦断的健康評価における偽陽性を減少させる
- Authors: Lavanya Umapathy, Patricia M Johnson, Tarun Dutt, Angela Tong, Madhur Nayan, Hersh Chandarana, Daniel K Sodickson,
- Abstract要約: 我々は、健康モニタリングを改善するために、事前訪問から多様なコンテキストを統合する機械学習フレームワークを開発した。
我々は,大集団のデータを用いた前立腺癌(PCa)のリスク予測に枠組みを適用した。
- 参考スコア(独自算出の注目度): 0.25830990919080105
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Temporal context in medicine is valuable in assessing key changes in patient health over time. We developed a machine learning framework to integrate diverse context from prior visits to improve health monitoring, especially when prior visits are limited and their frequency is variable. Our model first estimates initial risk of disease using medical data from the most recent patient visit, then refines this assessment using information digested from previously collected imaging and/or clinical biomarkers. We applied our framework to prostate cancer (PCa) risk prediction using data from a large population (28,342 patients, 39,013 magnetic resonance imaging scans, 68,931 blood tests) collected over nearly a decade. For predictions of the risk of clinically significant PCa at the time of the visit, integrating prior context directly converted false positives to true negatives, increasing overall specificity while preserving high sensitivity. False positive rates were reduced progressively from 51% to 33% when integrating information from up to three prior imaging examinations, as compared to using data from a single visit, and were further reduced to 24% when also including additional context from prior clinical data. For predicting the risk of PCa within five years of the visit, incorporating prior context reduced false positive rates still further (64% to 9%). Our findings show that information collected over time provides relevant context to enhance the specificity of medical risk prediction. For a wide range of progressive conditions, sufficient reduction of false positive rates using context could offer a pathway to expand longitudinal health monitoring programs to large populations with comparatively low baseline risk of disease, leading to earlier detection and improved health outcomes.
- Abstract(参考訳): 医学における時間的文脈は、患者の健康の経時的変化を評価する上で重要である。
先行訪問から多様なコンテキストを統合する機械学習フレームワークを開発し、特に事前訪問が制限され頻度が変動する場合に、健康モニタリングを改善する。
当モデルでは,最近受診した患者の医療データを用いて疾患の最初のリスクを推定し,以前に収集した画像や臨床バイオマーカーから抽出した情報を用いて,この評価を洗練する。
前立腺癌 (PCa) のリスク予測には, 人口28,342人, 39,013人のMRI, 68,931人の血液検査データを用いた。
来訪時の臨床的に有意なPCaのリスクを予測するために、事前の文脈は偽陽性を直接真陰に変換し、高い感度を維持しながら全体的な特異性を高めた。
51%から33%に減少し,1回の診察では24%に減少した。
訪問後5年以内にPCaのリスクを予測するために、事前の文脈を取り入れることで、偽陽性率がさらに減少する(64%から9%)。
本研究は,医療リスク予測の特異性を高めるために,時間とともに収集された情報が関連する文脈を提供することを示す。
幅広い進歩的な状況において、文脈を用いた十分な偽陽性率の減少は、比較的低水準の疾患リスクを持つ大集団に縦断的な健康モニタリングプログラムを拡大する経路を提供し、早期の発見と健康改善につながる可能性がある。
関連論文リスト
- Assessing the robustness of heterogeneous treatment effects in survival analysis under informative censoring [50.164756034797136]
臨床研究ではドロップアウトが一般的で、副作用やその他の理由で患者の半数以上が早期に退院する。
ドロップアウトが有益な場合、治療効果の推定値にもバイアスがかかるため、検閲バイアスが導入される。
検閲バイアスに直面した場合の生存分析における条件平均処理効果推定のロバスト性を評価するための仮定リーンフレームワークを提案する。
論文 参考訳(メタデータ) (2025-10-15T10:51:17Z) - SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network [4.772480981435387]
本稿では,条件付き順序付きランキングネットワークを用いた生存曲線の予測手法であるSurvCORNを提案する。
また,モデル予測の精度を評価するための指標であるSurvMAEを導入する。
論文 参考訳(メタデータ) (2024-09-30T03:01:25Z) - PersonalizedUS: Interpretable Breast Cancer Risk Assessment with Local Coverage Uncertainty Quantification [2.6911061523689415]
現在の「ゴールドスタンダード」は、臨床医による手動のBI-RADSスコアに依存しており、しばしば不必要な生検や、患者とその家族に対する精神的な負担を伴っている。
我々は、直列予測の最近の進歩を活用して、正確でパーソナライズされたリスク推定を提供する、パーソナライズされた機械学習システムであるPersonalizedUSを紹介する。
具体的な臨床効果としては、BI-RADS 4aと4bの病変のうち、要求された生検を最大で65%減らし、がんの再発は最小限である。
論文 参考訳(メタデータ) (2024-08-28T00:47:55Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Hospital transfer risk prediction for COVID-19 patients from a
medicalized hotel based on Diffusion GraphSAGE [7.021489981474361]
台湾では、軽度または軽度症状のある新型コロナウイルス患者の隔離施設として医療ホテルが開設された。
これらのホテルで利用可能な医療が限られているため、臨床劣化のリスクがある患者を特定することが最重要である。
本研究は, 医用ホテルにおける進行病院転院リスク予測のためのグラフベース深層学習手法の開発と評価を目的とした。
論文 参考訳(メタデータ) (2022-12-31T14:59:35Z) - Advances in Prediction of Readmission Rates Using Long Term Short Term
Memory Networks on Healthcare Insurance Data [1.454498931674109]
30日間の入院は長期にわたる医療問題であり、患者の死亡率や死亡率に影響を与え、年間数十億ドルの費用がかかる。
我々は、簡単に利用可能な保険データを利用できる双方向長短メモリ(LSTM)ネットワークを開発した。
以上の結果から, 機械学習モデルにより, 全患者に対して妥当な精度で入院リスクを予測できることが示唆された。
論文 参考訳(メタデータ) (2022-06-30T19:07:10Z) - Multimodal spatiotemporal graph neural networks for improved prediction
of 30-day all-cause hospital readmission [4.609543591101764]
本研究では,30日間の院内通院予測のためのマルチモーダル・モダリティ非依存型グラフニューラルネットワーク(MM-STGNN)を提案する。
MM-STGNNは、プライマリデータセットと外部データセットの両方で0.79のAUを達成する。
心臓・血管疾患患者のサブセットでは,30日間の寛解予測において,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-04-14T05:50:07Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。