論文の概要: An Analytic Theory of Quantum Imaginary Time Evolution
- arxiv url: http://arxiv.org/abs/2510.22481v1
- Date: Sun, 26 Oct 2025 01:43:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 15:28:15.215495
- Title: An Analytic Theory of Quantum Imaginary Time Evolution
- Title(参考訳): 量子イマジナリー時間進化の解析理論
- Authors: Min Chen, Bingzhi Zhang, Quntao Zhuang, Junyu Liu,
- Abstract要約: 量子想像時間進化アルゴリズム(Quantum imaginary Time Evolution, QITE)は、最も有望な変分量子アルゴリズムの1つである。
ここでは、QITEは量子自然勾配 Descent (QNGD) で訓練された一般的なVQAの形式として解釈できることを示す。
我々は、QITEは常にGDベースのVQAよりも早く収束することが証明されるが、この利点はヒルベルト空間次元の指数的成長によって抑制される。
- 参考スコア(独自算出の注目度): 12.82619168949495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum imaginary time evolution (QITE) algorithm is one of the most promising variational quantum algorithms (VQAs), bridging the current era of Noisy Intermediate-Scale Quantum devices and the future of fully fault-tolerant quantum computing. Although practical demonstrations of QITE and its potential advantages over the general VQA trained with vanilla gradient descent (GD) in certain tasks have been reported, a first-principle, theoretical understanding of QITE remains limited. Here, we aim to develop an analytic theory for the dynamics of QITE. First, we show that QITE can be interpreted as a form of a general VQA trained with Quantum Natural Gradient Descent (QNGD), where the inverse quantum Fisher information matrix serves as the learning-rate tensor. This equivalence is established not only at the level of gradient update rules, but also through the action principle: the variational principle can be directly connected to the geometric geodesic distance in the quantum Fisher information metric, up to an integration constant. Second, for wide quantum neural networks, we employ the quantum neural tangent kernel framework to construct an analytic model for QITE. We prove that QITE always converges faster than GD-based VQA, though this advantage is suppressed by the exponential growth of Hilbert space dimension. This helps explain certain experimental results in quantum computational chemistry. Our theory encompasses linear, quadratic, and more general loss functions. We validate the analytic results through numerical simulations. Our findings establish a theoretical foundation for QITE dynamics and provide analytic insights for the first-principle design of variational quantum algorithms.
- Abstract(参考訳): 量子想像時間進化(QITE)アルゴリズムは最も有望な変分量子アルゴリズム(VQA)の1つである。
QITEの実践的な実証と、特定のタスクにおいてバニラ勾配降下(GD)を訓練した一般VQAに対する潜在的な優位性は報告されているが、QITEの第一原理、理論的理解は限定的である。
ここでは,QITEの力学解析理論の開発を目的とする。
第一に、QITEは量子自然勾配 Descent (QNGD) で訓練された一般的なVQAの形式として解釈できることを示し、逆量子フィッシャー情報行列は学習速度テンソルとして機能する。
この等価性は、勾配更新規則のレベルだけでなく、アクション原理によっても確立される: 変分原理は、量子フィッシャー情報計量の幾何学測地線距離に直接、積分定数まで接続することができる。
第2に、広帯域量子ニューラルネットワークにおいて、量子ニューラル・タンジェント・カーネル・フレームワークを用いてQITEの分析モデルを構築する。
我々は、QITEは常にGDベースのVQAよりも早く収束することが証明されるが、この利点はヒルベルト空間次元の指数的成長によって抑制される。
これは量子計算化学における実験結果を説明するのに役立つ。
我々の理論は線型、二次的、より一般の損失関数を含む。
解析結果を数値シミュレーションにより検証する。
本研究は,QITE力学の理論的基礎を確立し,変分量子アルゴリズムの第一原理設計のための解析的知見を提供する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [62.46800898243033]
量子学習理論の最近の進歩は、様々な古典的な入力によって生成された測定データから、大きな量子ビット回路の線形特性を効率的に学習できるのか?
我々は、小さな予測誤差を達成するためには、$d$で線形にスケーリングするサンプルの複雑さが必要であることを証明し、それに対応する計算複雑性は、dで指数関数的にスケールする可能性がある。
そこで本研究では,古典的影と三角展開を利用したカーネルベースの手法を提案し,予測精度と計算オーバーヘッドとのトレードオフを制御可能とした。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Variational quantum algorithms for local Hamiltonian problems [0.0]
変分量子アルゴリズム(VQA)は、量子コンピュータを用いて最適化問題を解くために設計された量子アルゴリズムの一群である。
主に変分量子固有解法 (VQE) と呼ばれるアルゴリズムに注目し、量子ビットハミルトニアンは近似基底状態を返す。
論文 参考訳(メタデータ) (2022-08-23T22:32:56Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Improved variational quantum eigensolver via quasi-dynamical evolution [0.0]
変分量子固有解法 (VQE) は、現在および短期の量子デバイス向けに設計されたハイブリッド量子古典アルゴリズムである。
VQEには、量子優位性に対する好ましいスケーリングを禁じる問題がある。
本稿では,VQEを補う量子アニール法を提案する。
改良されたVQEは不毛の台地を回避し、局所的なミニマを放出し、低深度回路で動作する。
論文 参考訳(メタデータ) (2022-02-21T11:21:44Z) - Dequantizing the Quantum Singular Value Transformation: Hardness and
Applications to Quantum Chemistry and the Quantum PCP Conjecture [0.0]
量子特異値変換は効率的に「等化」できることを示す。
逆多項式精度では、同じ問題がBQP完全となることを示す。
また、この分位化手法が中心量子PCPの進展にどう役立つかについても論じる。
論文 参考訳(メタデータ) (2021-11-17T12:50:13Z) - Chaos and Complexity from Quantum Neural Network: A study with Diffusion
Metric in Machine Learning [0.0]
量子ニューラルネットワーク(QNN)の機械学習力学における量子カオス現象と複雑性について検討する。
統計的および微分幾何学的手法を用いてQNNの学習理論を研究する。
論文 参考訳(メタデータ) (2020-11-16T10:41:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。