論文の概要: Scaling Up Bayesian DAG Sampling
- arxiv url: http://arxiv.org/abs/2510.25254v1
- Date: Wed, 29 Oct 2025 08:06:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 15:50:45.276278
- Title: Scaling Up Bayesian DAG Sampling
- Title(参考訳): ベイジアンDAGサンプリングのスケールアップ
- Authors: Daniele Nikzad, Alexander Zhilkin, Juha Harviainen, Jack Kuipers, Giusi Moffa, Mikko Koivisto,
- Abstract要約: まず,1つのアークを追加,削除,反転する基本動作の効率的な実装について述べる。
第二に、より洗練された動きに必要な高価なタスクである親セットよりも早くまとめる。
- 参考スコア(独自算出の注目度): 44.742325897563056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian inference of Bayesian network structures is often performed by sampling directed acyclic graphs along an appropriately constructed Markov chain. We present two techniques to improve sampling. First, we give an efficient implementation of basic moves, which add, delete, or reverse a single arc. Second, we expedite summing over parent sets, an expensive task required for more sophisticated moves: we devise a preprocessing method to prune possible parent sets so as to approximately preserve the sums. Our empirical study shows that our techniques can yield substantial efficiency gains compared to previous methods.
- Abstract(参考訳): ベイジアンネットワーク構造のベイジアン推論は、適切に構築されたマルコフ連鎖に沿って有向非巡回グラフをサンプリングすることによって行われることが多い。
サンプリングを改善する2つの手法を提案する。
まず、ひとつの弧を追加、削除、反転する基本動作の効率的な実装を提供する。
第二に、より洗練された動作に必要なコストの高いタスクである親集合の和を高速化し、その和を大まかに保存するために、可能な親集合をプルークする前処理方法を考案する。
実験により, 従来の手法と比較して, 高い効率性が得られることが示された。
関連論文リスト
- Learning Discrete Bayesian Networks with Hierarchical Dirichlet Shrinkage [52.914168158222765]
我々はDBNを学習するための包括的なベイズ的フレームワークについて詳述する。
我々は、並列ランゲヴィン提案を用いてマルコフ連鎖モンテカルロ(MCMC)アルゴリズムを新たに提案し、正確な後続サンプルを生成する。
原発性乳癌検体から予後ネットワーク構造を明らかにするために本手法を適用した。
論文 参考訳(メタデータ) (2025-09-16T17:24:35Z) - Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
我々は、近似メッセージパッシング(AMP)のアンロールに基づくニューラルネットワークの最初の厳密な学習保証を証明した。
圧縮センシングでは、製品から引き出されたデータに基づいてトレーニングを行うと、ネットワークの層がベイズAMPで使用されるのと同じデノイザーに収束することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:56:16Z) - Plug-and-Play split Gibbs sampler: embedding deep generative priors in
Bayesian inference [12.91637880428221]
本稿では, 後方分布から効率的にサンプリングするために, 可変分割を利用したプラグアンドプレイサンプリングアルゴリズムを提案する。
後方サンプリングの課題を2つの単純なサンプリング問題に分割する。
その性能は最近の最先端の最適化とサンプリング手法と比較される。
論文 参考訳(メタデータ) (2023-04-21T17:17:51Z) - Calibrate and Debias Layer-wise Sampling for Graph Convolutional
Networks [39.56471534442315]
本稿では,行列近似の観点からアプローチを再考する。
本稿では,サンプリング確率と効率的なデバイアスアルゴリズムを構築するための新しい原理を提案する。
改良は、推定分散の広範囲な解析と、一般的なベンチマークの実験によって実証される。
論文 参考訳(メタデータ) (2022-06-01T15:52:06Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
本研究では,空間統計学から広く用いられている点過程の適応センシングについて検討する。
我々は、この強度関数を、特別に構築された正の基底で表される、歪んだガウス過程のサンプルとしてモデル化する。
我々の適応センシングアルゴリズムはランゲヴィン力学を用いており、後続サンプリング(textscCox-Thompson)と後続サンプリング(textscTop2)の原理に基づいている。
論文 参考訳(メタデータ) (2021-10-21T14:47:06Z) - Uncertainty-Aware Abstractive Summarization [3.1423034006764965]
ベイズ深層学習に基づく要約手法を提案する。
BARTとPEGの変動等価性は、複数のベンチマークデータセットで決定論的に比較した場合よりも優れていることを示す。
信頼性の高い不確実性尺度を持つことで、高い不確実性の生成された要約をフィルタリングすることにより、エンドユーザのエクスペリエンスを向上させることができる。
論文 参考訳(メタデータ) (2021-05-21T06:36:40Z) - Deep Shells: Unsupervised Shape Correspondence with Optimal Transport [52.646396621449]
本稿では,3次元形状対応のための教師なし学習手法を提案する。
提案手法は,複数のデータセット上での最先端技術よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-28T22:24:07Z) - Towards Scalable Bayesian Learning of Causal DAGs [16.07721608349973]
我々は,有向非巡回グラフ,DAG,および受動的に観測された完全データから誘導された因果効果のベイズ推定法を提案する。
我々の手法は最近のマルコフ連鎖モンテカルロスキームに基づいてベイジアンネットワークを学習する。
本稿では,空間と時間要求を大幅に削減するアルゴリズム手法を提案する。
論文 参考訳(メタデータ) (2020-09-30T08:46:46Z) - Structure Adaptive Algorithms for Stochastic Bandits [22.871155520200773]
構造化多武装バンディット問題のクラスにおける報酬最大化について検討する。
平均的な武器の報酬は、与えられた構造的制約を満たす。
我々は、反復的なサドルポイントソルバを用いて、インスタンス依存の低バウンドからのアルゴリズムを開発する。
論文 参考訳(メタデータ) (2020-07-02T08:59:54Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
エミュレータと呼ばれる適応サンプリングを解析するための新しい手法を提案する。
適切なログファクタを組み込んだトップk問題の最初のインスタンスベースの下位境界を証明します。
我々の新しい分析は、後者の問題に対するこの種の最初のエミュレータであるベストアームとトップkの識別に、シンプルでほぼ最適であることを示した。
論文 参考訳(メタデータ) (2017-02-16T23:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。