論文の概要: PEGNet: A Physics-Embedded Graph Network for Long-Term Stable Multiphysics Simulation
- arxiv url: http://arxiv.org/abs/2511.08697v1
- Date: Thu, 13 Nov 2025 01:02:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.196774
- Title: PEGNet: A Physics-Embedded Graph Network for Long-Term Stable Multiphysics Simulation
- Title(参考訳): PEGNet:長期安定多物理シミュレーションのための物理埋め込みグラフネットワーク
- Authors: Can Yang, Zhenzhong Wang, Junyuan Liu, Yunpeng Gong, Min Jiang,
- Abstract要約: 偏微分方程式(PDE)によって支配される物理現象は、科学と工学の進歩にとって重要である。
PEGNetは物理埋め込みグラフネットワークであり、PDE誘導メッセージパスを再設計されたグラフニューラルネットワークアーキテクチャに組み込む。
従来の手法に比べて長期予測精度と物理的整合性に大きな改善が見られた。
- 参考スコア(独自算出の注目度): 8.95344024479836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and efficient simulations of physical phenomena governed by partial differential equations (PDEs) are important for scientific and engineering progress. While traditional numerical solvers are powerful, they are often computationally expensive. Recently, data-driven methods have emerged as alternatives, but they frequently suffer from error accumulation and limited physical consistency, especially in multiphysics and complex geometries. To address these challenges, we propose PEGNet, a Physics-Embedded Graph Network that incorporates PDE-guided message passing to redesign the graph neural network architecture. By embedding key PDE dynamics like convection, viscosity, and diffusion into distinct message functions, the model naturally integrates physical constraints into its forward propagation, producing more stable and physically consistent solutions. Additionally, a hierarchical architecture is employed to capture multi-scale features, and physical regularization is integrated into the loss function to further enforce adherence to governing physics. We evaluated PEGNet on benchmarks, including custom datasets for respiratory airflow and drug delivery, showing significant improvements in long-term prediction accuracy and physical consistency over existing methods. Our code is available at https://github.com/Yanghuoshan/PEGNet.
- Abstract(参考訳): 偏微分方程式(PDE)によって支配される物理現象の高精度かつ効率的なシミュレーションは、科学や工学の進歩に重要である。
従来の数値解法は強力だが、計算コストが高いことが多い。
近年、データ駆動方式が代替手段として登場したが、特に多物理や複雑な幾何学において、エラーの蓄積や物理的整合性に悩まされることが多い。
これらの課題に対処するために、PDE誘導メッセージパッシングを組み込んだ物理埋め込みグラフネットワークであるPEGNetを提案し、グラフニューラルネットワークアーキテクチャを再設計する。
対流、粘性、拡散といった主要なPDEダイナミクスを異なるメッセージ関数に埋め込むことで、モデルは物理的制約をその前方伝播に自然に統合し、より安定で物理的に一貫した解を生成する。
さらに、階層的アーキテクチャを用いてマルチスケールの特徴をキャプチャし、物理正則化を損失関数に統合し、物理制御への厳密性をさらに強化する。
PEGNetをベンチマークで評価したところ,呼吸気流と薬物の送達のためのカスタムデータセットを含む,従来の方法に比べて長期予測精度と身体的整合性に大きな改善が見られた。
私たちのコードはhttps://github.com/Yanghuoshan/PEGNet.comで公開されています。
関連論文リスト
- Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
本研究では,単一のビデオから既知の連続制御方程式の物理パラメータを推定する教師なし手法を提案する。
Delfys75は5種類の動的システムのための75本のビデオからなる実世界のデータセットだ。
論文 参考訳(メタデータ) (2024-10-02T09:44:54Z) - PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
我々は物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)という新しいグラフ学習手法を提案する。
我々は,GNNを数値積分器に組み込んで,与えられたPDEシステムに対する時間的時間的ダイナミクスの時間的行進を近似する。
PhyMPGNは、粗い非構造メッシュ上での様々なタイプの時間的ダイナミクスを正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-02T08:54:18Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
気候予測は、流体シミュレーションにおける全ての乱流スケールを解決するために、微細な時間分解能を必要とする。
現在の数値モデル解法 PDEs on grids that too coarse (3km~200km on each side)
本研究では,空間的位置問合せが与えられたPDEの空間的連続解を予測する新しいアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-10-11T14:52:20Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
偏微分方程式 (Partial differential equation, PDE) は、幅広い分野の問題をモデル化し、シミュレーションする上で基礎的な役割を果たす。
近年のディープラーニングの進歩は、データ駆動逆解析の基盤としてPDEを解くために物理学インフォームドニューラルネットワーク(NN)の大きな可能性を示している。
本稿では,PDEをラベル付きデータなしで解くための物理インフォームド・畳み込み学習アーキテクチャ(PhyCRNetとPhCRyNet-s)を提案する。
論文 参考訳(メタデータ) (2021-06-26T22:22:19Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。