論文の概要: HGAN-SDEs: Learning Neural Stochastic Differential Equations with Hermite-Guided Adversarial Training
- arxiv url: http://arxiv.org/abs/2512.20272v1
- Date: Tue, 23 Dec 2025 11:25:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-24 19:17:49.845295
- Title: HGAN-SDEs: Learning Neural Stochastic Differential Equations with Hermite-Guided Adversarial Training
- Title(参考訳): HGAN-SDE:Hermite-Guided Adversarial Trainingを用いたニューラル確率微分方程式の学習
- Authors: Yuanjian Xu, Yuan Shuai, Jianing Hao, Guang Zhang,
- Abstract要約: HGAN-SDEは,ニューラルエルマイト関数を利用して,構造化された効率的な識別器を構築する新しいGANベースのフレームワークである。
HGAN-SDEは,既存のSDE生成モデルと比較して,サンプル品質と学習効率が優れている。
- 参考スコア(独自算出の注目度): 3.4515388499147654
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Neural Stochastic Differential Equations (Neural SDEs) provide a principled framework for modeling continuous-time stochastic processes and have been widely adopted in fields ranging from physics to finance. Recent advances suggest that Generative Adversarial Networks (GANs) offer a promising solution to learning the complex path distributions induced by SDEs. However, a critical bottleneck lies in designing a discriminator that faithfully captures temporal dependencies while remaining computationally efficient. Prior works have explored Neural Controlled Differential Equations (CDEs) as discriminators due to their ability to model continuous-time dynamics, but such architectures suffer from high computational costs and exacerbate the instability of adversarial training. To address these limitations, we introduce HGAN-SDEs, a novel GAN-based framework that leverages Neural Hermite functions to construct a structured and efficient discriminator. Hermite functions provide an expressive yet lightweight basis for approximating path-level dynamics, enabling both reduced runtime complexity and improved training stability. We establish the universal approximation property of our framework for a broad class of SDE-driven distributions and theoretically characterize its convergence behavior. Extensive empirical evaluations on synthetic and real-world systems demonstrate that HGAN-SDEs achieve superior sample quality and learning efficiency compared to existing generative models for SDEs
- Abstract(参考訳): ニューラル確率微分方程式(Neural Stochastic Differential Equations (Neural SDEs))は、連続時間確率過程をモデル化するための原則的なフレームワークであり、物理学から金融まで幅広く採用されている。
近年の進歩は、GAN(Generative Adversarial Networks)が、SDEによって誘導される複雑な経路分布の学習に有望なソリューションを提供することを示している。
しかし、重要なボトルネックは、計算効率を保ちながら時間的依存を忠実に捉えた判別器を設計することにある。
従来の研究は、連続時間力学をモデル化する能力から差別化要因としてニューラル制御微分方程式(CDE)を探索してきたが、そのようなアーキテクチャは高い計算コストに悩まされ、敵の訓練の不安定性が悪化する。
HGAN-SDEはニューラルエルマイト関数を利用して構造的かつ効率的な識別器を構築する新しいGANベースのフレームワークである。
Hermite関数は、パスレベルのダイナミクスを近似するための表現力のある軽量な基盤を提供する。
我々は、SDE駆動分布の幅広いクラスに対するフレームワークの普遍近似特性を確立し、その収束挙動を理論的に特徴づける。
HGAN-SDEは、既存のSDE生成モデルと比較して、サンプル品質と学習効率が優れていることを示す。
関連論文リスト
- A joint optimization approach to identifying sparse dynamics using least squares kernel collocation [70.13783231186183]
本研究では,通常の微分方程式(ODE)の学習システムを,状態の不足,部分的,ノイズの多い観測から学習するためのオール・アット・オンス・モデリング・フレームワークを開発する。
提案手法は,関数ライブラリ上でのODEのスパースリカバリ戦略とカーネルヒルベルト空間(RKHS)理論による状態推定とODEの離散化の手法を組み合わせたものである。
論文 参考訳(メタデータ) (2025-11-23T18:04:15Z) - SDE Matching: Scalable and Simulation-Free Training of Latent Stochastic Differential Equations [2.1779479916071067]
SDEマッチング(SDE Matching)を提案する。
以上の結果から,SDEマッチングは随伴感度法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2025-02-04T16:47:49Z) - Neural SDEs as a Unified Approach to Continuous-Domain Sequence Modeling [3.8980564330208662]
本稿では,連続シーケンスモデリングに対する新しい直感的なアプローチを提案する。
本手法は, 時系列データを, 基礎となる連続力学系からのtextitdiscrete サンプルとして解釈する。
我々は、ニューラルネットワークSDEモデルの効率的なトレーニングのための、最大原理的目的とテクスティシミュレーションなしスキームを導出する。
論文 参考訳(メタデータ) (2025-01-31T03:47:22Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - Non-adversarial training of Neural SDEs with signature kernel scores [4.721845865189578]
不規則な時系列生成のための最先端性能は、これらのモデルをGANとして逆向きに訓練することで既に得られている。
本稿では,シグネチャカーネルに基づくパス空間のスコアリングルールを新たに導入する。
論文 参考訳(メタデータ) (2023-05-25T17:31:18Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Accurate and Reliable Forecasting using Stochastic Differential
Equations [48.21369419647511]
ディープラーニングモデルにとって、現実世界の環境に浸透する不確実性を適切に特徴付けることは、非常に困難である。
本論文では,HNNの予測平均と分散の相互作用を特徴づけるSDE-HNNを開発した。
本手法は,予測性能と不確実性定量化の両方の観点から,最先端のベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-03-28T04:18:11Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。