論文の概要: Forecasting N-Body Dynamics: A Comparative Study of Neural Ordinary Differential Equations and Universal Differential Equations
- arxiv url: http://arxiv.org/abs/2512.20643v1
- Date: Fri, 12 Dec 2025 11:20:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-29 00:37:57.113031
- Title: Forecasting N-Body Dynamics: A Comparative Study of Neural Ordinary Differential Equations and Universal Differential Equations
- Title(参考訳): 予測N-ボディダイナミクス:ニューラル正規微分方程式と普遍微分方程式の比較研究
- Authors: Suriya R S, Prathamesh Dinesh Joshi, Rajat Dandekar, Raj Dandekar, Sreedath Panat,
- Abstract要約: 天体物理学の基礎となるn体問題は、自身の重力相互作用の効果の下で作用するn体の運動をシミュレートする。
トラジェクトリの予測と予測に使用される伝統的な機械学習モデルは、しばしばデータ集約的なブラックボックスモデルである。
一方、Scientific Machine Learningは、既知の物理法則を直接機械学習フレームワークに組み込む。
- 参考スコア(独自算出の注目度): 4.285464959472458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The n body problem, fundamental to astrophysics, simulates the motion of n bodies acting under the effect of their own mutual gravitational interactions. Traditional machine learning models that are used for predicting and forecasting trajectories are often data intensive black box models, which ignore the physical laws, thereby lacking interpretability. Whereas Scientific Machine Learning ( Scientific ML ) directly embeds the known physical laws into the machine learning framework. Through robust modelling in the Julia programming language, our method uses the Scientific ML frameworks: Neural ordinary differential equations (NODEs) and Universal differential equations (UDEs) to predict and forecast the system dynamics. In addition, an essential component of our analysis involves determining the forecasting breakdown point, which is the smallest possible amount of training data our models need to predict future, unseen data accurately. We employ synthetically created noisy data to simulate real-world observational limitations. Our findings indicate that the UDE model is much more data efficient, needing only 20% of data for a correct forecast, whereas the Neural ODE requires 90%.
- Abstract(参考訳): 天体物理学の基礎となるn体問題は、互いに重力的な相互作用によって作用するn体の運動をシミュレートする。
トラジェクトリの予測と予測に使用される伝統的な機械学習モデルは、しばしばデータ集約的なブラックボックスモデルであり、物理的法則を無視し、解釈可能性に欠ける。
一方、Scientific Machine Learning(Scientific ML)は、既知の物理法則を直接機械学習フレームワークに組み込む。
ユリアプログラミング言語のロバストなモデリングにより,ニューラル常微分方程式 (NODE) とユニバーサル微分方程式 (UDE) という科学MLフレームワークを用いてシステムの力学を予測・予測する。
さらに、我々の分析の重要な構成要素は予測ブレークポイントを決定することであり、これは我々のモデルが将来予測するべきトレーニングデータの最小の量である。
実世界の観測限界をシミュレートするために合成合成ノイズデータを用いる。
以上の結果から,UDEモデルの方がはるかにデータ効率が高く,正確な予測には20%のデータしか必要とせず,Neural ODEでは90%が要求されることがわかった。
関連論文リスト
- Topological Approach for Data Assimilation [0.4972323953932129]
トポロジカルデータ解析の基礎となる新しいデータ同化アルゴリズムを提案する。
パーシステンス関数の微分可能性を活用することにより、勾配勾配最適化は、測定と予測予測の間の位相的差を最小限に抑えるために用いられる。
論文 参考訳(メタデータ) (2024-11-12T20:24:46Z) - Scientific machine learning in ecological systems: A study on the predator-prey dynamics [1.4633779950109127]
我々は、学習データやニューラルネットワークにのみ依存して、システムの事前の知識なしに、基礎となる微分方程式を明らかにすることを目指している。
本稿では,LotkaVolterraシステムの予測と予測に,Neural ODEとUDEの両方を効果的に活用できることを実証する。
基礎となるダイナミクスを効果的に回復し、トレーニングデータを大幅に減らして正確な予測を行うことで、UDEがニューラルODEより優れているかを観察した。
論文 参考訳(メタデータ) (2024-11-11T10:40:45Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - LEARNEST: LEARNing Enhanced Model-based State ESTimation for Robots
using Knowledge-based Neural Ordinary Differential Equations [4.3403382998035624]
本研究では、状態推定アルゴリズムで用いられる力学モデルを強化することにより、ロボットシステムの正確な状態推定を行うタスクについて考察する。
動的モデルの強化と推定精度の向上のために,知識ベースニューラル常微分方程式(KNODE)と呼ばれるディープラーニングフレームワークを利用する。
提案する LEARNEST フレームワークでは,データ駆動モデルと KNODE-MHE と KNODE-UKF の2つの新しいモデルベース状態推定アルゴリズムを統合する。
論文 参考訳(メタデータ) (2022-09-16T22:16:40Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
本研究は、極限サイクルを持つ物理非線形力学系に対する普遍微分方程式(UDE)モデルの訓練に焦点をあてる。
数値シミュレーションによりトレーニングデータを生成する例を考察するとともに,提案するモデリング概念を物理実験に適用する。
ニューラルネットワークとガウス過程の両方を、力学モデルと共に普遍近似器として使用し、UDEモデリングアプローチの正確性と堅牢性を批判的に評価する。
論文 参考訳(メタデータ) (2021-10-22T15:43:03Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。