論文の概要: StoTAM: Stochastic Alternating Minimization for Tucker-Structured Tensor Sensing
- arxiv url: http://arxiv.org/abs/2601.13522v1
- Date: Tue, 20 Jan 2026 02:18:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:23.121199
- Title: StoTAM: Stochastic Alternating Minimization for Tucker-Structured Tensor Sensing
- Title(参考訳): StoTAM:Tucker-Structured Tensor Sensingのための確率交代最小化
- Authors: Shuang Li,
- Abstract要約: 低ランクテンソルセンシングは、信号処理と機械学習の幅広い応用において基本的な問題である。
既存のリカバリ手法は、高価なテンソルプロジェクションを持つフルテンソル変数で動作するか、あるいはまだフル段階の計算に依存している分解式を採用するかのいずれかである。
本研究では、タッカー因子化の下でコアテンソルと係数行列を直接操作する交互最小化アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 7.549565266107219
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Low-rank tensor sensing is a fundamental problem with broad applications in signal processing and machine learning. Among various tensor models, low-Tucker-rank tensors are particularly attractive for capturing multi-mode subspace structures in high-dimensional data. Existing recovery methods either operate on the full tensor variable with expensive tensor projections, or adopt factorized formulations that still rely on full-gradient computations, while most stochastic factorized approaches are restricted to tensor decomposition settings. In this work, we propose a stochastic alternating minimization algorithm that operates directly on the core tensor and factor matrices under a Tucker factorization. The proposed method avoids repeated tensor projections and enables efficient mini-batch updates on low-dimensional tensor factors. Numerical experiments on synthetic tensor sensing demonstrate that the proposed algorithm exhibits favorable convergence behavior in wall-clock time compared with representative stochastic tensor recovery baselines.
- Abstract(参考訳): 低ランクテンソルセンシングは、信号処理と機械学習の幅広い応用において基本的な問題である。
様々なテンソルモデルの中で、ロータッカーランクテンソルは高次元データにおいて多モード部分空間構造を捉えるのに特に魅力的である。
既存のリカバリ手法は、高価なテンソルプロジェクションを持つフルテンソル変数で動作するか、あるいはまだフル段階の計算に依存する分解式を採用するかのいずれかであり、確率的分解法はテンソル分解設定に制限される。
本研究では,タッカー因子化の下で,コアテンソルと係数行列を直接操作する確率交互最小化アルゴリズムを提案する。
提案手法はテンソルプロジェクションの繰り返しを回避し,低次元テンソル要素に対する効率的なミニバッチ更新を可能にする。
合成テンソルセンシングの数値実験により, 提案アルゴリズムは, 確率的テンソルリカバリベースラインと比較して, ウォールクロック時間で良好な収束挙動を示すことを示した。
関連論文リスト
- Score-Based Model for Low-Rank Tensor Recovery [49.158601255093416]
低ランクテンソル分解(TD)は、マルチウェイデータ解析に有効なフレームワークを提供する。
従来のTD法は、CPやタッカー分解のような事前定義された構造的仮定に依存している。
本稿では,事前定義された構造的仮定や分布的仮定の必要性を排除したスコアベースモデルを提案する。
論文 参考訳(メタデータ) (2025-06-27T15:05:37Z) - Low-Rank Tensor Recovery via Variational Schatten-p Quasi-Norm and Jacobian Regularization [49.85875869048434]
暗黙的神経表現のためのニューラルネットワークによりパラメータ化されたCPベースの低ランクテンソル関数を提案する。
本研究では、スペーサーCP分解を実現するために、冗長なランク1成分に変分Schatten-p quasi-normを導入する。
滑らか性のために、ヤコビアンとハッチンソンのトレース推定器のスペクトルノルムに基づく正規化項を提案する。
論文 参考訳(メタデータ) (2025-06-27T11:23:10Z) - A Scalable Factorization Approach for High-Order Structured Tensor Recovery [30.876260188209105]
分解は、非常に小さな次元の約$N$因子を使って$N$のテンソルを表すが、パラメータの数を著しく減少させる。
これらの問題に対する計算的メモリ効率のアプローチは、局所アルゴリズムを用いた因子を直接的に最適化することである。
様々なテンソル分解問題を解くための因子分解の統一的枠組みを提案する。
論文 参考訳(メタデータ) (2025-06-19T05:07:07Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
我々は,PCAが信号の大きさの臨界値で計算的に困難になることを示す。
我々は、与えられた次数の不変量に対して明示的でほぼ直交的な基底を与える新しい対象の集合を定義する。
また、異なるアンサンブルを区別する新しい問題も分析できます。
論文 参考訳(メタデータ) (2024-04-29T14:33:24Z) - Optimizing Orthogonalized Tensor Deflation via Random Tensor Theory [5.124256074746721]
本稿では、ランダムノイズテンソルから相関成分を持つ低ランク信号テンソルを復元する問題に取り組む。
非直交成分はテンソルデフレレーション機構を変化させ、効率的に回復するのを防ぐことができる。
デフレレーション機構で導入されたパラメータを最適化することにより、効率的なテンソルデフレレーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-11T22:23:27Z) - Low-Rank Tensor Function Representation for Multi-Dimensional Data
Recovery [52.21846313876592]
低ランクテンソル関数表現(LRTFR)は、無限解像度でメッシュグリッドを超えてデータを連続的に表現することができる。
テンソル関数に対する2つの基本的な概念、すなわちテンソル関数ランクとローランクテンソル関数分解を開発する。
提案手法は,最先端手法と比較して,提案手法の優越性と汎用性を裏付けるものである。
論文 参考訳(メタデータ) (2022-12-01T04:00:38Z) - MTC: Multiresolution Tensor Completion from Partial and Coarse
Observations [49.931849672492305]
既存の完備化の定式化は、主に1つのテンソルからの部分的な観測に依存する。
この問題を解決するために,効率的なマルチレゾリューション・コンプリート・モデル(MTC)を提案する。
論文 参考訳(メタデータ) (2021-06-14T02:20:03Z) - Understanding Deflation Process in Over-parametrized Tensor
Decomposition [17.28303004783945]
過度にパラメータ化されたテンソル分解問題における勾配流のトレーニング力学について検討する。
経験的に、このようなトレーニングプロセスは、まず大きなコンポーネントに適合し、次に小さなコンポーネントを発見する。
論文 参考訳(メタデータ) (2021-06-11T18:51:36Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
基本的な課題は、高度に不完全な測定からテンソルを忠実に回収することである。
タッカー分解におけるテンソル因子を直接回復するアルゴリズムを開発した。
2つの正準問題に対する基底真理テンソルの線形独立率で確実に収束することを示す。
論文 参考訳(メタデータ) (2021-04-29T17:44:49Z) - Low-Rank and Sparse Enhanced Tucker Decomposition for Tensor Completion [3.498620439731324]
テンソル完備化のために,低ランクかつスパースに拡張されたタッカー分解モデルを導入する。
我々のモデルはスパースコアテンソルを促進するためにスパース正規化項を持ち、テンソルデータ圧縮に有用である。
テンソルに出現する潜在的な周期性と固有相関特性を利用するので,本モデルでは様々な種類の実世界のデータセットを扱うことが可能である。
論文 参考訳(メタデータ) (2020-10-01T12:45:39Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
本稿では,テンソル低ランクモデルに基づくマルチビュースペクトルクラスタリング(MVSC)の問題について検討する。
MVSCに適合する新しい構造テンソル低ランクノルムを設計する。
提案手法は最先端の手法よりもかなり優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T11:52:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。