論文の概要: Geometric Neural Operators via Lie Group-Constrained Latent Dynamics
- arxiv url: http://arxiv.org/abs/2602.16209v1
- Date: Wed, 18 Feb 2026 06:17:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-19 15:58:30.528542
- Title: Geometric Neural Operators via Lie Group-Constrained Latent Dynamics
- Title(参考訳): Lie Group-Constrained Latent Dynamicsによる幾何学的ニューラル演算子
- Authors: Jiaquan Zhang, Fachrina Dewi Puspitasari, Songbo Zhang, Yibei Liu, Kuien Liu, Caiyan Qin, Fan Mo, Peng Wang, Yang Yang, Chaoning Zhang,
- Abstract要約: 本研究では,パラメータ増加の2.26%のコストで,相対予測誤差を30~50%削減できることを示す。
その結果,本手法は長期予測精度を向上させるためのスケーラブルなソリューションであることがわかった。
- 参考スコア(独自算出の注目度): 14.152015935335358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural operators offer an effective framework for learning solutions of partial differential equations for many physical systems in a resolution-invariant and data-driven manner. Existing neural operators, however, often suffer from instability in multi-layer iteration and long-horizon rollout, which stems from the unconstrained Euclidean latent space updates that violate the geometric and conservation laws. To address this challenge, we propose to constrain manifolds with low-rank Lie algebra parameterization that performs group action updates on the latent representation. Our method, termed Manifold Constraining based on Lie group (MCL), acts as an efficient \emph{plug-and-play} module that enforces geometric inductive bias to existing neural operators. Extensive experiments on various partial differential equations, such as 1-D Burgers and 2-D Navier-Stokes, over a wide range of parameters and steps demonstrate that our method effectively lowers the relative prediction error by 30-50\% at the cost of 2.26\% of parameter increase. The results show that our approach provides a scalable solution for improving long-term prediction fidelity by addressing the principled geometric constraints absent in the neural operator updates.
- Abstract(参考訳): ニューラルネットワークは、多くの物理系に対する偏微分方程式の解を、分解不変かつデータ駆動的な方法で学習するための効果的なフレームワークを提供する。
しかし、既存のニューラル作用素は、幾何法則や保存法則に反する非拘束のユークリッドの潜在空間更新に起因して、多層反復や長い水平ロールアウトの不安定さに悩まされることが多い。
この課題に対処するために、潜在表現上で群アクション更新を行う低ランクリー代数パラメタライゼーションによる多様体の制約を提案する。
我々の手法は、リー群(MCL)に基づくマニフォールド制約と呼ばれ、既存のニューラル演算子に幾何学的帰納バイアスを課す効率的な 'emph{plug-and-play} モジュールとして機能する。
1-D Burgers や 2-D Navier-Stokes といった様々な偏微分方程式に対する広範囲な実験により,パラメータ増加の2.26 % で相対予測誤差を 30-50 % に効果的に下げることを示した。
その結果,ニューラル演算子の更新に欠落する基本的幾何学的制約に対処することにより,長期予測忠実度を改善するためのスケーラブルなソリューションが得られた。
関連論文リスト
- Neural Optimal Transport Meets Multivariate Conformal Prediction [58.43397908730771]
条件付きベクトル回帰(CVQR)のためのフレームワークを提案する。
CVQRは、ニューラルネットワークの最適輸送と量子化された最適化を組み合わせて、予測に適用する。
論文 参考訳(メタデータ) (2025-09-29T19:50:19Z) - An Evolutionary Multi-objective Optimization for Replica-Exchange-based Physics-informed Operator Learning Network [7.1950116347185995]
本稿では,レプリカに基づく物理インフォームド演算子学習ネットワークのための進化的多目的最適化を提案する。
我々のフレームワークは、精度、ノイズ、不確実性を定量化する能力において、一般的な演算子学習方法よりも一貫して優れています。
論文 参考訳(メタデータ) (2025-08-31T02:17:59Z) - TensorGRaD: Tensor Gradient Robust Decomposition for Memory-Efficient Neural Operator Training [91.8932638236073]
textbfTensorGRaDは,重み付けに伴うメモリ問題に直接対処する新しい手法である。
SparseGRaD は総メモリ使用量を 50% 以上削減し,同時に精度も向上することを示した。
論文 参考訳(メタデータ) (2025-01-04T20:51:51Z) - Neural Parameter Regression for Explicit Representations of PDE Solution Operators [22.355460388065964]
偏微分方程式(PDE)の解演算子を学習するための新しいフレームワークであるニューラル回帰(NPR)を導入する。
NPRは、ニューラルネットワーク(NN)パラメータを回帰するために、Physics-Informed Neural Network (PINN, Raissi et al., 2021) 技術を使用している。
このフレームワークは、新しい初期条件と境界条件に顕著な適応性を示し、高速な微調整と推論を可能にした。
論文 参考訳(メタデータ) (2024-03-19T14:30:56Z) - Differentiable DG with Neural Operator Source Term Correction [0.0]
圧縮可能なNavier-Stokes方程式を解くためのエンドツーエンドの微分可能なフレームワークを提案する。
この統合アプローチは、微分可能不連続なガレルキン解法とニューラルネットワークのソース項を組み合わせる。
提案するフレームワークの性能を2つの例で示す。
論文 参考訳(メタデータ) (2023-10-29T04:26:23Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
本稿では,メモリ要求を低減し,より一般化したデータ効率・並列化可能な演算子学習手法を提案する。
MG-TFNOは、実世界の実世界の現象の局所的構造と大域的構造を活用することで、大規模な分解能にスケールする。
乱流ナビエ・ストークス方程式において150倍以上の圧縮で誤差の半分以下を達成できる優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-29T20:18:52Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。