論文の概要: Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds
- arxiv url: http://arxiv.org/abs/1905.10448v4
- Date: Tue, 25 Jul 2023 17:53:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 22:08:11.995092
- Title: Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds
- Title(参考訳): コンパクトリーマン多様体上の幾何学ウェーブレット散乱ネットワーク
- Authors: Michael Perlmutter and Feng Gao and Guy Wolf and Matthew Hirn
- Abstract要約: ユークリッド散乱変換と同様に、幾何学的散乱変換はウェーブレットフィルタのカスケードとポイントワイド非線形性に基づいている。
経験的結果は幾何的学習課題にその有用性を示す。
- 参考スコア(独自算出の注目度): 9.341436585977913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Euclidean scattering transform was introduced nearly a decade ago to
improve the mathematical understanding of convolutional neural networks.
Inspired by recent interest in geometric deep learning, which aims to
generalize convolutional neural networks to manifold and graph-structured
domains, we define a geometric scattering transform on manifolds. Similar to
the Euclidean scattering transform, the geometric scattering transform is based
on a cascade of wavelet filters and pointwise nonlinearities. It is invariant
to local isometries and stable to certain types of diffeomorphisms. Empirical
results demonstrate its utility on several geometric learning tasks. Our
results generalize the deformation stability and local translation invariance
of Euclidean scattering, and demonstrate the importance of linking the used
filter structures to the underlying geometry of the data.
- Abstract(参考訳): ユークリッド散乱変換は10年近く前に導入され、畳み込みニューラルネットワークの数学的理解を改善した。
畳み込みニューラルネットワークを多様体およびグラフ構造領域に一般化することを目的とした幾何学的深層学習への近年の関心に触発され、多様体上の幾何学的散乱変換を定義する。
ユークリッド散乱変換と同様に、幾何学的散乱変換はウェーブレットフィルタとポイントワイズ非線形性のカスケードに基づいている。
局所同型に不変であり、ある種の微分同型に安定である。
実験結果は幾何学習タスクにおいてその有用性を示す。
本研究では, ユークリッド散乱の変形安定性と局所変換不変性を一般化し, 使用済みフィルタ構造とデータの基底形状とのリンクの重要性を実証する。
関連論文リスト
- Physics-informed neural networks for transformed geometries and
manifolds [0.0]
本稿では,幾何学的変分を頑健に適合させるために,PINN内に幾何変換を統合する新しい手法を提案する。
従来のPINNに対して,特に幾何学的変動下での柔軟性の向上を実証する。
提案したフレームワークは、パラメータ化されたジオメトリ上でのディープ・ニューラル演算子のトレーニングの展望を示す。
論文 参考訳(メタデータ) (2023-11-27T15:47:33Z) - A Theory of Topological Derivatives for Inverse Rendering of Geometry [87.49881303178061]
我々は、位相微分を用いて離散的な位相変化を可能にする微分可能な曲面進化の理論的枠組みを導入する。
2次元の閉曲線と3次元の曲面を最適化して提案理論を検証し、現在の手法の限界について考察する。
論文 参考訳(メタデータ) (2023-08-19T00:55:55Z) - Geometric Scattering on Measure Spaces [12.0756034112778]
測度空間上での幾何散乱の一般統一モデルを導入する。
未知多様体をランダムにサンプリングして得られる有限測度空間を考える。
本稿では, 関連するグラフ散乱変換が基礎多様体上の散乱変換を近似するデータ駆動グラフを構築するための2つの方法を提案する。
論文 参考訳(メタデータ) (2022-08-17T22:40:09Z) - Revisiting Transformation Invariant Geometric Deep Learning: Are Initial
Representations All You Need? [80.86819657126041]
変換不変および距離保存初期表現は変換不変性を達成するのに十分であることを示す。
具体的には、多次元スケーリングを変更することで、変換不変かつ距離保存された初期点表現を実現する。
我々は、TinvNNが変換不変性を厳密に保証し、既存のニューラルネットワークと組み合わせられるほど汎用的で柔軟なことを証明した。
論文 参考訳(メタデータ) (2021-12-23T03:52:33Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
ディープニューラルネットワークは、音声認識、機械翻訳、画像解析など、いくつかの科学領域で複雑な問題を解決するために広く使われている。
我々は、リーマン計量を備えた列の最後の多様体で、多様体間の写像の特定の列を研究する。
このようなシーケンスのマップの理論的性質について検討し、最終的に実践的な関心を持つニューラルネットワークの実装間のマップのケースに焦点を当てる。
論文 参考訳(メタデータ) (2021-12-17T11:43:30Z) - Geometric variational inference [0.0]
変分推論 (VI) またはマルコフ・チェイン・モンテカルロ (MCMC) 技術は点推定を超えて用いられる。
本研究は,リーマン幾何学とフィッシャー情報量に基づく幾何学的変分推論(geoVI)を提案する。
変換によって誘導される座標系で表される分布は、特に単純であり、正確な変分近似を可能にする。
論文 参考訳(メタデータ) (2021-05-21T17:18:50Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
graphs [81.12344211998635]
メッシュ上の畳み込みを定義する一般的なアプローチは、それらをグラフとして解釈し、グラフ畳み込みネットワーク(GCN)を適用することである。
本稿では、GCNを一般化して異方性ゲージ同変カーネルを適用するGauge Equivariant Mesh CNNを提案する。
本実験は,従来のGCNおよび他の手法と比較して,提案手法の表現性を大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-03-11T17:21:15Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
散乱変換は、畳み込みニューラルネットワークのモデルとして機能する多層ウェーブレットベースのディープラーニングアーキテクチャである。
非対称ウェーブレットの非常に一般的なクラスに基づくグラフに対して、窓付きおよび非窓付き幾何散乱変換を導入する。
これらの非対称グラフ散乱変換は、対称グラフ散乱変換と多くの理論的保証を持つことを示す。
論文 参考訳(メタデータ) (2019-11-14T17:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。