論文の概要: Approximate Graph Spectral Decomposition with the Variational Quantum
Eigensolver
- arxiv url: http://arxiv.org/abs/1912.12366v1
- Date: Fri, 27 Dec 2019 23:27:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 22:58:59.420315
- Title: Approximate Graph Spectral Decomposition with the Variational Quantum
Eigensolver
- Title(参考訳): 変分量子固有解法を用いた近似グラフスペクトル分解
- Authors: Josh Payne and Mario Srouji
- Abstract要約: スペクトルグラフ理論はラプラシア行列と隣接行列とその関連するグラフの固有ベクトルと固有値の関係を研究する。
ハイブリッド量子/古典的アルゴリズムとして変分量子固有解法 (VQE) アルゴリズムが提案された。
本稿では、VQEアルゴリズムを拡張し、有向グラフと無向グラフのスペクトルを解析する。
- 参考スコア(独自算出の注目度): 1.0152838128195465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectral graph theory is a branch of mathematics that studies the
relationships between the eigenvectors and eigenvalues of Laplacian and
adjacency matrices and their associated graphs. The Variational Quantum
Eigensolver (VQE) algorithm was proposed as a hybrid quantum/classical
algorithm that is used to quickly determine the ground state of a Hamiltonian,
and more generally, the lowest eigenvalue of a matrix $M\in \mathbb{R}^{n\times
n}$. There are many interesting problems associated with the spectral
decompositions of associated matrices, such as partitioning, embedding, and the
determination of other properties. In this paper, we will expand upon the VQE
algorithm to analyze the spectra of directed and undirected graphs. We evaluate
runtime and accuracy comparisons (empirically and theoretically) between
different choices of ansatz parameters, graph sizes, graph densities, and
matrix types, and demonstrate the effectiveness of our approach on Rigetti's
QCS platform on graphs of up to 64 vertices, finding eigenvalues of adjacency
and Laplacian matrices. We finally make direct comparisons to classical
performance with the Quantum Virtual Machine (QVM) in the appendix, observing a
superpolynomial runtime improvement of our algorithm when run using a quantum
computer.
- Abstract(参考訳): スペクトルグラフ理論(英: Spectral graph theory)は、ラプラス行列と隣接行列の固有ベクトルと固有値の関係を研究する数学の分野である。
変分量子固有解法(VQE)アルゴリズムは、ハミルトンの基底状態の迅速な決定に使用されるハイブリッド量子/古典的アルゴリズムとして提案され、より一般的には行列 $M\in \mathbb{R}^{n\times n}$ の最小固有値である。
関連する行列のスペクトル分解(分割、埋め込み、その他の性質の決定など)に関連する多くの興味深い問題が存在する。
本稿では, vqeアルゴリズムを拡張し, 有向グラフと非有向グラフのスペクトル解析を行う。
我々は,アンサッツパラメータ,グラフサイズ,グラフ密度,行列タイプの異なる選択間の実行時間と精度の比較を評価し,最大64頂点のグラフ上のリゲッティのqcsプラットフォーム上での手法の有効性を実証し,隣接行列とラプラシア行列の固有値を求める。
量子コンピュータを用いて実行した場合のアルゴリズムの超多項実行時間の改善を観測し,量子仮想マシン (qvm) と古典的性能を直接比較した。
関連論文リスト
- Quantum walk informed variational algorithm design [0.0]
量子変分アルゴリズム(QVA)における振幅伝達の解析のための理論的枠組みを提案する。
制約のない,制約のない新規最適化のためのアルゴリズムを開発する。
既存のQVAよりもコンバージェンスが改善された。
論文 参考訳(メタデータ) (2024-06-17T15:04:26Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
フービニ・スタディ計量に基づく絡み合い尺度は、Cocchiarellaと同僚によって最近導入された。
本稿では,多モードガウス状態に対する幾何絡み合いの一般化であるガウスエンタングルメント尺度(GEM)を提案する。
自由度の高い系に対する計算可能な多部絡み合わせ測度を提供することにより、自由なボゾン場理論の洞察を得るために、我々の定義が利用できることを示す。
論文 参考訳(メタデータ) (2024-01-31T15:50:50Z) - Quantum eigenvalue processing [0.0]
線形代数の問題は、非正規入力行列の固有値を処理して量子コンピュータ上で解くことができる。
ブロック符号化された非正規作用素の固有値に任意の変換を適用するための量子固有値変換(QEVT)フレームワークを提案する。
また,実スペクトルを持つ演算子に対する量子固有値推定(QEVE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-11T19:49:31Z) - Using Variational Eigensolvers on Low-End Hardware to Find the Ground
State Energy of Simple Molecules [0.0]
物理系の鍵となる性質は、系を表す行列の固有値によって記述することができる。
これらの行列の固有値を決定する計算アルゴリズムは存在するが、一般に行列のサイズが大きくなるにつれて性能が低下する。
この過程を量子計算に拡張して、古典的アルゴリズムよりも優れた性能で固有値を求めることができる。
論文 参考訳(メタデータ) (2023-10-29T18:36:18Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
原子と分子の衝突に対するシュリンガー方程式を解くためのハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムはコーン変分原理の$S$-matrixバージョンに基づいており、基本散乱$S$-matrixを計算する。
大規模多原子分子の衝突をシミュレートするために,アルゴリズムをどのようにスケールアップするかを示す。
論文 参考訳(メタデータ) (2023-04-12T18:10:47Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - Stochastic Parallelizable Eigengap Dilation for Large Graph Clustering [12.544602297450533]
私たちは、ほとんどのエッジがクラスタ内に落ち、わずかにエッジがクラスタ間に落ちているノードのクラスタを特定することを目的としています。
スペクトルクラスタリングのコアステップは、対応するグラフラプラシア行列の固有分解を行う。
本稿では,SVDソルバを高速化し,スペクトルクラスタリングを行うために,スペクトルを並列化可能なアプローチを提案する。
論文 参考訳(メタデータ) (2022-07-29T10:13:07Z) - A quantum algorithm for solving eigenproblem of the Laplacian matrix of
a fully connected weighted graph [4.045204834863644]
完全連結重み付きグラフのラプラシア行列の固有確率を解くための効率的な量子アルゴリズムを提案する。
具体的には,ブロック符号化フレームワークに基づく最適ハミルトンシミュレーション手法を採用する。
また、このアルゴリズムは対称(非対称)正規化ラプラス行列の固有確率を解くために拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-03-28T02:24:08Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
機械学習におけるデータ表現のための固有problemsの解を高速化する量子手続きを提供する。
これらのサブルーチンのパワーと実用性は、主成分分析、対応解析、潜在意味解析のための入力行列の大きさのサブ線形量子アルゴリズムによって示される。
その結果、入力のサイズに依存しない実行時のパラメータは妥当であり、計算モデル上の誤差が小さいことが示され、競合的な分類性能が得られる。
論文 参考訳(メタデータ) (2021-04-19T00:41:43Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Quantum algorithms for spectral sums [50.045011844765185]
正半定値行列(PSD)のスペクトル和を推定するための新しい量子アルゴリズムを提案する。
本稿では, スペクトルグラフ理論における3つの問題に対して, アルゴリズムと手法が適用可能であることを示す。
論文 参考訳(メタデータ) (2020-11-12T16:29:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。