論文の概要: Quantum walk informed variational algorithm design
- arxiv url: http://arxiv.org/abs/2406.11620v2
- Date: Fri, 21 Jun 2024 13:29:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 18:47:43.650796
- Title: Quantum walk informed variational algorithm design
- Title(参考訳): 量子ウォーク情報変分アルゴリズムの設計
- Authors: Edric Matwiejew, Jingbo B. Wang,
- Abstract要約: 量子変分アルゴリズム(QVA)における振幅伝達の解析のための理論的枠組みを提案する。
制約のない,制約のない新規最適化のためのアルゴリズムを開発する。
既存のQVAよりもコンバージェンスが改善された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a theoretical framework for the analysis of amplitude transfer in Quantum Variational Algorithms (QVAs) for combinatorial optimisation with mixing unitaries defined by vertex-transitive graphs, based on their continuous-time quantum walk (CTQW) representation and the theory of graph automorphism groups. This framework leads to a heuristic for designing efficient problem-specific QVAs. Using this heuristic, we develop novel algorithms for unconstrained and constrained optimisation. We outline their implementation with polynomial gate complexity and simulate their application to the parallel machine scheduling and portfolio rebalancing combinatorial optimisation problems, showing significantly improved convergence over preexisting QVAs. Based on our analysis, we derive metrics for evaluating the suitability of graph structures for specific problem instances, and for establishing bounds on the convergence supported by different graph structures. For mixing unitaries characterised by a CTQW over a Hamming graph on $m$-tuples of length $n$, our results indicate that the amplification upper bound increases with problem size like $\mathcal{O}(e^{n \log m})$.
- Abstract(参考訳): 本稿では,その連続時間量子ウォーク(CTQW)表現とグラフ自己同型群の理論に基づいて,頂点遷移グラフで定義されるユニタリを混合した組合せ最適化のための量子変分アルゴリズム(QVA)の振幅伝達解析の理論的枠組みを提案する。
このフレームワークは、効率的な問題固有のQVAを設計するためのヒューリスティックにつながります。
このヒューリスティックな手法を用いて,制約のない最適化のための新しいアルゴリズムを開発した。
本稿では, 多項式ゲートの複雑性による実装の概要を述べるとともに, 並列マシンスケジューリングと組合せ最適化問題へのポートフォリオ再分散への応用をシミュレートし, 既存のQVAの収束性を大幅に向上したことを示す。
分析結果から,特定の問題事例に対するグラフ構造の適合性を評価する指標と,異なるグラフ構造が支持する収束の限界を確立する指標を導出する。
長さ$n$のm$-tuples上のハミンググラフ上のCTQWによって特徴づけられるユニタリを混合するために、この結果は$\mathcal{O}(e^{n \log m})$のような問題サイズで増幅上界が増加することを示す。
関連論文リスト
- Automorphism-Assisted Quantum Approximate Optimization Algorithm for efficient graph optimization [0.0]
我々は、グラフ自己同型を識別するために、Nautyパッケージを使用し、エッジ同値クラスを決定することに重点を置いている。
これらの対称性を利用することで、ハミルトニアンの複雑性を著しく低減することができる。
この結果から, 自己同型に基づく対称性を用いて, 得られた解の質を損なうことなく, 計算オーバーヘッドを著しく低減できることが示唆された。
論文 参考訳(メタデータ) (2024-10-29T17:10:25Z) - Hamiltonian-based Quantum Reinforcement Learning for Neural Combinatorial Optimization [2.536162003546062]
量子コンピューティング(QC)とニューラル最適化(NCO)の交差点におけるアプローチとして,ハミルトニアンの量子強化学習(QRL)を導入する。
我々のアンサーゼは、ハードウェア効率のよいアンサーゼと比較して、良好なトレーサビリティ特性を示す一方で、以前の研究とは異なり、グラフベースの問題に制限されない。
本研究では,ハミルトニアンのQRLの性能を多種多様な最適化問題で評価し,本手法の適用可能性を実証し,QAOAと比較する。
論文 参考訳(メタデータ) (2024-05-13T14:36:22Z) - Pymablock: an algorithm and a package for quasi-degenerate perturbation theory [0.0]
実効的なハミルトニアンと,それを実装するPythonパッケージであるPymablockを構築するアルゴリズムを導入する。
我々は、パッケージがk.pモデルの構築をどのように処理し、超伝導量子ビットを解析し、大きな強結合モデルの低エネルギースペクトルを計算するかを実証する。
論文 参考訳(メタデータ) (2024-04-04T18:00:08Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Multi-task Learning of Order-Consistent Causal Graphs [59.9575145128345]
我々は、$K関連ガウス非巡回グラフ(DAG)の発見問題を考える。
マルチタスク学習環境下では, 線形構造方程式モデルを学習するためのMLE ($l_1/l$-regularized maximum chance estimator) を提案する。
理論的には、関係するタスクにまたがるデータを活用することで、因果順序を復元する際のサンプルの複雑さをより高めることができることを示す。
論文 参考訳(メタデータ) (2021-11-03T22:10:18Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
量子近似最適化アルゴリズム(QAOA)とクォーディットを用いた相関クラスタリング問題について検討する。
具体的には、中性原子量子コンピュータを検討し、相関クラスタリングのためのフルスタックアプローチを提案する。
ゲート数によって定量化されるように、quditの実装はqubitエンコーディングよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-22T11:07:38Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Solution to the Quantum Symmetric Simple Exclusion Process : the
Continuous Case [0.0]
無限大極限における一次元 Q-SSEP の不変確率測度に対する解を提案する。
本稿では,Q-SSEP相関関数の解釈を,驚くべきコネラトニクスとアソシアヘドロン多面体を通して,偶然に指摘する。
論文 参考訳(メタデータ) (2020-06-22T13:20:40Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Approximate Graph Spectral Decomposition with the Variational Quantum
Eigensolver [1.0152838128195465]
スペクトルグラフ理論はラプラシア行列と隣接行列とその関連するグラフの固有ベクトルと固有値の関係を研究する。
ハイブリッド量子/古典的アルゴリズムとして変分量子固有解法 (VQE) アルゴリズムが提案された。
本稿では、VQEアルゴリズムを拡張し、有向グラフと無向グラフのスペクトルを解析する。
論文 参考訳(メタデータ) (2019-12-27T23:27:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。