Using Deep Learning to Explore Local Physical Similarity for
Global-scale Bridging in Thermal-hydraulic Simulation
- URL: http://arxiv.org/abs/2001.04298v1
- Date: Mon, 6 Jan 2020 20:14:46 GMT
- Title: Using Deep Learning to Explore Local Physical Similarity for
Global-scale Bridging in Thermal-hydraulic Simulation
- Authors: Han Bao, Nam Dinh, Linyu Lin, Robert Youngblood, Jeffrey Lane, Hongbin
Zhang
- Abstract summary: Current system thermal-hydraulic codes have limited credibility in simulating real plant conditions.
This paper proposes a data-driven approach, Feature Similarity Measurement FFSM, to overcome these difficulties.
Deep learning is applied to construct and explore the relationship between the local physical features and simulation errors.
- Score: 4.350727579753697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current system thermal-hydraulic codes have limited credibility in simulating
real plant conditions, especially when the geometry and boundary conditions are
extrapolated beyond the range of test facilities. This paper proposes a
data-driven approach, Feature Similarity Measurement FFSM), to establish a
technical basis to overcome these difficulties by exploring local patterns
using machine learning. The underlying local patterns in multiscale data are
represented by a set of physical features that embody the information from a
physical system of interest, empirical correlations, and the effect of mesh
size. After performing a limited number of high-fidelity numerical simulations
and a sufficient amount of fast-running coarse-mesh simulations, an error
database is built, and deep learning is applied to construct and explore the
relationship between the local physical features and simulation errors. Case
studies based on mixed convection have been designed for demonstrating the
capability of data-driven models in bridging global scale gaps.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - PointSAGE: Mesh-independent superresolution approach to fluid flow predictions [0.0]
High-resolution CFD simulations offer valuable insights into fluid behavior and flow patterns.
As resolution increases, computational data requirements and time increase proportionately.
We propose PointSAGE, a mesh-independent network to learn the complex fluid flow and directly predict fine simulations.
arXiv Detail & Related papers (2024-04-06T12:49:09Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Simulation-based inference using surjective sequential neural likelihood
estimation [50.24983453990065]
Surjective Sequential Neural Likelihood estimation is a novel method for simulation-based inference.
By embedding the data in a low-dimensional space, SSNL solves several issues previous likelihood-based methods had when applied to high-dimensional data sets.
arXiv Detail & Related papers (2023-08-02T10:02:38Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - A stable deep adversarial learning approach for geological facies
generation [32.97208255533144]
Deep generative learning is a promising approach to overcome the limitations of traditional geostatistical simulation models.
This research aims to investigate the application of generative adversarial networks and deep variational inference for conditionally meandering channels in underground volumes.
arXiv Detail & Related papers (2023-05-12T14:21:14Z) - Strategic Geosteeering Workflow with Uncertainty Quantification and Deep
Learning: A Case Study on the Goliat Field [0.0]
This paper presents a practical workflow consisting of offline and online phases.
The offline phase includes training and building of an uncertain prior near-well geo-model.
The online phase uses the flexible iterative ensemble smoother (FlexIES) to perform real-time assimilation of extra-deep electromagnetic data.
arXiv Detail & Related papers (2022-10-27T15:38:26Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Learning Similarity Metrics for Volumetric Simulations with Multiscale
CNNs [25.253880881581956]
We propose a similarity model based on entropy, which allows for the creation of physically meaningful ground truth distances.
We create collections of fields from numerical PDE solvers and existing simulation data repositories.
A multiscale CNN architecture that computes a volumetric similarity metric (VolSiM) is proposed.
arXiv Detail & Related papers (2022-02-08T19:19:08Z) - PREPRINT: Comparison of deep learning and hand crafted features for
mining simulation data [7.214140640112874]
This paper addresses the task of extracting meaningful results in an automated manner from high dimensional data sets.
We propose deep learning methods which are capable of processing such data and which can be trained to solve relevant tasks on simulation data.
We compile a large dataset of 2D simulations of the flow field around airfoils which contains 16000 flow fields with which we tested and compared approaches.
arXiv Detail & Related papers (2021-03-11T09:28:00Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.