論文の概要: Certified and fast computations with shallow covariance kernels
- arxiv url: http://arxiv.org/abs/2001.09187v4
- Date: Thu, 12 Nov 2020 18:48:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-07 05:38:19.140027
- Title: Certified and fast computations with shallow covariance kernels
- Title(参考訳): 浅い共分散カーネルによる認証及び高速計算
- Authors: Daniel Kressner, Jonas Latz, Stefano Massei, Elisabeth Ullmann
- Abstract要約: パラメータ化された共分散演算子の族を低ランクで近似するアルゴリズムを新たに導入し,解析する。
提案アルゴリズムは,パラメータ依存確率場に対する高速サンプリング法の基礎を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many techniques for data science and uncertainty quantification demand
efficient tools to handle Gaussian random fields, which are defined in terms of
their mean functions and covariance operators. Recently, parameterized Gaussian
random fields have gained increased attention, due to their higher degree of
flexibility. However, especially if the random field is parameterized through
its covariance operator, classical random field discretization techniques fail
or become inefficient. In this work we introduce and analyze a new and
certified algorithm for the low-rank approximation of a parameterized family of
covariance operators which represents an extension of the adaptive cross
approximation method for symmetric positive definite matrices. The algorithm
relies on an affine linear expansion of the covariance operator with respect to
the parameters, which needs to be computed in a preprocessing step using, e.g.,
the empirical interpolation method. We discuss and test our new approach for
isotropic covariance kernels, such as Mat\'ern kernels. The numerical results
demonstrate the advantages of our approach in terms of computational time and
confirm that the proposed algorithm provides the basis of a fast sampling
procedure for parameter dependent Gaussian random fields.
- Abstract(参考訳): データサイエンスと不確実性定量化のための多くの技術は、平均関数と共分散作用素の観点で定義されるガウス確率場を扱う効率的なツールを必要としている。
近年,パラメータ化ガウス確率場は高い柔軟性のために注目されている。
しかし、特に確率場が共分散演算子によってパラメータ化される場合、古典的確率場離散化技術は失敗するか非効率になる。
本研究では、対称正定値行列に対する適応的クロス近似法の拡張を表す共分散作用素のパラメータ化族を低ランクで近似するアルゴリズムを新たに導入し、解析する。
このアルゴリズムは、パラメータに関して共分散作用素のアフィン線型展開に依存しており、例えば経験的補間法を用いて前処理ステップで計算する必要がある。
我々は,mat\'ern カーネルのような等方共分散核に対する新しいアプローチを議論し,検証する。
計算時間の観点から,本手法の利点を実証し,提案アルゴリズムがパラメータ依存ガウス確率場に対する高速サンプリング法の基礎を提供することを確認した。
関連論文リスト
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
バニラと制約付きBOアルゴリズムは、不変目的を最適化する際の非効率性を示す。
我々はこれらの不変カーネルの最大情報ゲインを導出する。
核融合炉用電流駆動システムの設計に本手法を用い, 高性能溶液の探索を行った。
論文 参考訳(メタデータ) (2024-10-22T12:51:46Z) - Gaussian Processes Sampling with Sparse Grids under Additive Schwarz Preconditioner [6.408773096179187]
本稿では,GPモデルの前と後をランダムに実現するためのスケーラブルなアルゴリズムを提案する。
提案アルゴリズムはスパースグリッドを用いた点近似と加法的シュワルツプレコンディショナーを利用する。
論文 参考訳(メタデータ) (2024-08-01T00:19:36Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
ランダム機能(RF)は、機械学習においてカーネルメソッドをスケールアップする一般的なテクニックである。
ユークリッド空間と離散入力空間の両方で定義されるRFを改善するための結合を求める。
パラダイムとしての分散還元の利点と限界について、驚くほどの結論に達した。
論文 参考訳(メタデータ) (2024-05-26T12:25:09Z) - A general error analysis for randomized low-rank approximation with application to data assimilation [42.57210316104905]
中心行列および非標準行列に対するフロベニウスノルムにおける低ランク近似誤差の解析のための枠組みを提案する。
最小限の仮定の下では、期待と確率の正確な境界を導出する。
私たちの境界には、プロパティを導出し、実践的な選択を動機付けるための明確な解釈があります。
論文 参考訳(メタデータ) (2024-05-08T04:51:56Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - FAVOR#: Sharp Attention Kernel Approximations via New Classes of
Positive Random Features [39.282051468586666]
本稿では,ガウスとソフトマックス・カーネルを近似したパラメータ化,正,非三角形のRFを提案する。
提案手法は, カーネル回帰タスクにおいて, 従来の手法よりも分散低減し, 性能的に優れていることを示す。
また,変換器の自己アテンション近似法であるFAVOR#を提案する。
論文 参考訳(メタデータ) (2023-02-01T22:43:29Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Linear Time Kernel Matrix Approximation via Hyperspherical Harmonics [3.24890820102255]
機械学習のカーネル手法で発生する行列の低ランク近似を構築するための新しい手法を提案する。
提案手法では,基礎となるカーネル関数の解析的拡張をデータ依存圧縮ステップと組み合わせて,近似をさらに最適化する。
実験の結果,提案手法は,与えられたランクの精度と,与えられた精度の計算時間の両方に関して,カーネル,次元,データセットにまたがってよく用いられるNystrom法と比較した。
論文 参考訳(メタデータ) (2022-02-08T05:19:39Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
スパースマルコフ過程は、誘導変数の使用と効率的なカルマンフィルタライク再帰を結合する。
我々は,局所ガウス項を用いて非ガウス的確率を近似する一般的なサイトベースアプローチであるsitesを導出する。
提案手法は,変動推論,期待伝播,古典非線形カルマンスムーサなど,機械学習と信号処理の両方から得られるアルゴリズムの新たなスパース拡張の一群を導出する。
派生した方法は、モデルが時間と空間の両方で別々の誘導点を持つ文学時間データに適しています。
論文 参考訳(メタデータ) (2021-03-19T09:50:53Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。