論文の概要: Comparison of Distal Teacher Learning with Numerical and Analytical
Methods to Solve Inverse Kinematics for Rigid-Body Mechanisms
- arxiv url: http://arxiv.org/abs/2003.00225v1
- Date: Sat, 29 Feb 2020 09:55:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 21:02:25.981360
- Title: Comparison of Distal Teacher Learning with Numerical and Analytical
Methods to Solve Inverse Kinematics for Rigid-Body Mechanisms
- Title(参考訳): リジッド・ボディ機構の逆運動学解法における遠位教師学習と数値解析法の比較
- Authors: Tim von Oehsen, Alexander Fabisch, Shivesh Kumar and Frank Kirchner
- Abstract要約: 私たちは、逆キネマティクス(DT)に対する最初の機械学習(ML)ソリューションの1つとして、微分可能なプログラミングライブラリを組み合わせると、実際には十分よいと論じています。
我々は,解答率,精度,サンプル効率,スケーラビリティを解析する。
十分なトレーニングデータと緩和精度の要求により、DTはより優れた解法率を持ち、15-DoF機構のための最先端の数値解法よりも高速である。
- 参考スコア(独自算出の注目度): 67.80123919697971
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several publications are concerned with learning inverse kinematics, however,
their evaluation is often limited and none of the proposed methods is of
practical relevance for rigid-body kinematics with a known forward model. We
argue that for rigid-body kinematics one of the first proposed machine learning
(ML) solutions to inverse kinematics -- distal teaching (DT) -- is actually
good enough when combined with differentiable programming libraries and we
provide an extensive evaluation and comparison to analytical and numerical
solutions. In particular, we analyze solve rate, accuracy, sample efficiency
and scalability. Further, we study how DT handles joint limits, singularities,
unreachable poses, trajectories and provide a comparison of execution times.
The three approaches are evaluated on three different rigid body mechanisms
with varying complexity. With enough training data and relaxed precision
requirements, DT has a better solve rate and is faster than state-of-the-art
numerical solvers for a 15-DoF mechanism. DT is not affected by singularities
while numerical solutions are vulnerable to them. In all other cases numerical
solutions are usually better. Analytical solutions outperform the other
approaches by far if they are available.
- Abstract(参考訳): いくつかの出版物は逆キネマティクスの学習に関心があるが、その評価は限定的であり、提案手法のどれも既知のフォワードモデルによる剛体キネマティクスの実践的関連性はない。
我々は、剛体キネマティックスにとって、逆キネマティックスに対する最初の提案された機械学習(ml)ソリューションの1つである遠位キネマティックス(dt)は、微分可能なプログラミングライブラリと組み合わせれば、実際には十分であると主張している。
特に,解決率,精度,サンプル効率,スケーラビリティを分析した。
さらに, DTが関節限界, 特異点, 到達不能ポーズ, 軌道をどう扱うかについて検討し, 実行時間の比較を行った。
3つのアプローチは複雑度が異なる3つの異なる剛体機構で評価される。
十分なトレーニングデータと緩和精度の要求により、DTはより優れた解法率を持ち、15-DoF機構のための最先端の数値解法よりも高速である。
DTは特異性に影響されないが、数値解はそれらに対して脆弱である。
他のすべての場合、数値解は通常より優れている。
分析ソリューションは、利用可能であれば他のアプローチをはるかに上回る。
関連論文リスト
- Approximation Theory, Computing, and Deep Learning on the Wasserstein Space [0.5735035463793009]
有限標本からの無限次元空間における近似関数の挑戦に対処する。
我々の焦点はワッサーシュタイン距離関数であり、これは関連する例である。
機能近似を定義するために,機械学習に基づく3つのアプローチを採用する。
論文 参考訳(メタデータ) (2023-10-30T13:59:47Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
本研究では,データ活用を必要とせずにパラメトリック偏微分方程式(PDE)を解く演算子に基づく新しい手法を提案する。
提案手法は,既存の科学的機械学習技術と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T12:37:15Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Neural Operator: Is data all you need to model the world? An insight
into the impact of Physics Informed Machine Learning [13.050410285352605]
我々は、データ駆動アプローチが、工学や物理学の問題を解決する従来の手法を補完する方法についての洞察を提供する。
我々は,PDE演算子学習の解演算子を学習するための,新しい,高速な機械学習に基づくアプローチを強調した。
論文 参考訳(メタデータ) (2023-01-30T23:29:33Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Learning to correct spectral methods for simulating turbulent flows [6.110864131646294]
古典的数値手法と機械学習のハイブリッドにより、どちらの手法よりも大幅に改善できることが示される。
具体的には、流体力学の3つの共通偏微分方程式に対するML拡張スペクトル解法を開発する。
論文 参考訳(メタデータ) (2022-07-01T17:13:28Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Solver-in-the-Loop: Learning from Differentiable Physics to Interact
with Iterative PDE-Solvers [26.444103444634994]
認識されたPDEが捉えない効果を補正することにより、機械学習が解の精度を向上させることができることを示す。
従来使用されていた学習手法は,学習ループにソルバを組み込む手法により大幅に性能が向上していることがわかった。
これにより、以前の補正を考慮に入れたリアルな入力分布がモデルに提供される。
論文 参考訳(メタデータ) (2020-06-30T18:00:03Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
本稿では,オンライン分散ロバスト最適化(DRO)のクラスを解決するための実用的なオンライン手法を提案する。
本研究は,ネットワークの堅牢性向上のための機械学習における重要な応用を実証する。
論文 参考訳(メタデータ) (2020-06-17T20:19:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。