論文の概要: Solver-in-the-Loop: Learning from Differentiable Physics to Interact
with Iterative PDE-Solvers
- arxiv url: http://arxiv.org/abs/2007.00016v2
- Date: Tue, 5 Jan 2021 11:04:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 06:23:11.506783
- Title: Solver-in-the-Loop: Learning from Differentiable Physics to Interact
with Iterative PDE-Solvers
- Title(参考訳): Solver-in-the-Loop:微分物理学から学び、反復型PDEソルバーと相互作用する
- Authors: Kiwon Um, Robert Brand, Yun (Raymond) Fei, Philipp Holl, Nils Thuerey
- Abstract要約: 認識されたPDEが捉えない効果を補正することにより、機械学習が解の精度を向上させることができることを示す。
従来使用されていた学習手法は,学習ループにソルバを組み込む手法により大幅に性能が向上していることがわかった。
これにより、以前の補正を考慮に入れたリアルな入力分布がモデルに提供される。
- 参考スコア(独自算出の注目度): 26.444103444634994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finding accurate solutions to partial differential equations (PDEs) is a
crucial task in all scientific and engineering disciplines. It has recently
been shown that machine learning methods can improve the solution accuracy by
correcting for effects not captured by the discretized PDE. We target the
problem of reducing numerical errors of iterative PDE solvers and compare
different learning approaches for finding complex correction functions. We find
that previously used learning approaches are significantly outperformed by
methods that integrate the solver into the training loop and thereby allow the
model to interact with the PDE during training. This provides the model with
realistic input distributions that take previous corrections into account,
yielding improvements in accuracy with stable rollouts of several hundred
recurrent evaluation steps and surpassing even tailored supervised variants. We
highlight the performance of the differentiable physics networks for a wide
variety of PDEs, from non-linear advection-diffusion systems to
three-dimensional Navier-Stokes flows.
- Abstract(参考訳): 偏微分方程式(pdes)の正確な解を見つけることは、すべての科学および工学分野において重要な課題である。
近年,識別されたPDEが捉えない効果を補正することで,機械学習が解の精度を向上させることが示されている。
本研究では,反復型pdeソルバの数値誤差を低減し,複雑な補正関数を求めるための異なる学習手法を比較する。
従来使用されていた学習手法は,学習ループにソルバを組み込むことで,トレーニング中にモデルがPDEと対話できるようにする方法により,大幅に優れていた。
これにより、以前の修正を考慮した現実的な入力分布が提供され、数百回の繰り返し評価ステップの安定したロールアウトによって精度が向上し、さらに調整済みの教師付き変種を超える。
非線形対流拡散システムから3次元ナビエ-ストークス流れに至るまで,多種多様なPDEに対する微分可能な物理ネットワークの性能を強調した。
関連論文リスト
- Learning a Neural Solver for Parametric PDE to Enhance Physics-Informed Methods [14.791541465418263]
データに基づいて訓練された物理インフォームド反復アルゴリズムを用いて偏微分方程式(PDE)の解法を学習することを提案する。
本手法は,各PDEインスタンスに自動的に適応する勾配降下アルゴリズムの条件付けを学習する。
複数のデータセットに対する経験的実験により,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-09T12:28:32Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - End-to-End Mesh Optimization of a Hybrid Deep Learning Black-Box PDE Solver [24.437884270729903]
最近の研究では、ディープラーニングを利用して、粗いメッシュ上のPDEソルバによって得られる解を補正するPDE補正フレームワークが提案されている。
このようなPDE補正モデルのエンドツーエンドトレーニングでは、PDEソルバは反復的な数値過程を通じて自動微分をサポートする必要がある。
本研究では,ブラックボックスPDEソルバと流体流予測のためのディープラーニングモデルを用いたハイブリッドモデルのエンドツーエンドトレーニングの実現可能性について検討する。
論文 参考訳(メタデータ) (2024-04-17T21:49:45Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
PDEを用いた多物理問題の解法として,コドメイン注意ニューラル演算子(CoDA-NO)を提案する。
CoDA-NOはコドメインやチャネル空間に沿った機能をトークン化し、複数のPDEシステムの自己教師付き学習や事前訓練を可能にする。
CoDA-NOは、データ制限のある複雑な下流タスクにおいて、既存のメソッドを36%以上上回ります。
論文 参考訳(メタデータ) (2024-03-19T08:56:20Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Adversarial Multi-task Learning Enhanced Physics-informed Neural
Networks for Solving Partial Differential Equations [9.823102211212582]
本稿では,多タスク学習手法,不確実性強調損失,勾配手術を学習pdeソリューションの文脈で活用する新しいアプローチを提案する。
実験では,提案手法が有効であることが判明し,従来手法と比較して未発見のデータポイントの誤差を低減できた。
論文 参考訳(メタデータ) (2021-04-29T13:17:46Z) - DiscretizationNet: A Machine-Learning based solver for Navier-Stokes
Equations using Finite Volume Discretization [0.7366405857677226]
この研究の目的はMLベースのPDEソルバを開発することであり、既存のPDEソルバと機械学習技術の重要な特徴を結合させることである。
我々のML-ソルバであるDiscretizationNetは、PDE変数を入力と出力の両方の特徴として、生成CNNベースのエンコーダデコーダモデルを採用している。
ML-ゾルバの安定性と収束性を改善するために,ネットワークトレーニング中に新しい反復能力を実装した。
論文 参考訳(メタデータ) (2020-05-17T19:54:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。