論文の概要: Enabling Automatic Differentiation with Mollified Graph Neural Operators
- arxiv url: http://arxiv.org/abs/2504.08277v1
- Date: Fri, 11 Apr 2025 06:16:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:18:17.112210
- Title: Enabling Automatic Differentiation with Mollified Graph Neural Operators
- Title(参考訳): 増分グラフニューラル演算子による自動微分の実現
- Authors: Ryan Y. Lin, Julius Berner, Valentin Duruisseaux, David Pitt, Daniel Leibovici, Jean Kossaifi, Kamyar Azizzadenesheli, Anima Anandkumar,
- Abstract要約: 本稿では,任意の測地上での自動微分とエンフェクサクタクティック勾配を計算するための最初の手法であるモリファイドグラフニューラル演算子 (mGNO) を提案する。
正規格子上のPDEの例では、mGNOとオートグレードの組み合わせにより、L2相対データの誤差は有限差に比べて20倍減少した。
また、物理損失のみを使用し、有限差分に必要な分解能よりもはるかに低い精度で、非構造化点雲上のPDEをシームレスに解くことができる。
- 参考スコア(独自算出の注目度): 75.3183193262225
- License:
- Abstract: Physics-informed neural operators offer a powerful framework for learning solution operators of partial differential equations (PDEs) by combining data and physics losses. However, these physics losses rely on derivatives. Computing these derivatives remains challenging, with spectral and finite difference methods introducing approximation errors due to finite resolution. Here, we propose the mollified graph neural operator (mGNO), the first method to leverage automatic differentiation and compute \emph{exact} gradients on arbitrary geometries. This enhancement enables efficient training on irregular grids and varying geometries while allowing seamless evaluation of physics losses at randomly sampled points for improved generalization. For a PDE example on regular grids, mGNO paired with autograd reduced the L2 relative data error by 20x compared to finite differences, although training was slower. It can also solve PDEs on unstructured point clouds seamlessly, using physics losses only, at resolutions vastly lower than those needed for finite differences to be accurate enough. On these unstructured point clouds, mGNO leads to errors that are consistently 2 orders of magnitude lower than machine learning baselines (Meta-PDE) for comparable runtimes, and also delivers speedups from 1 to 3 orders of magnitude compared to the numerical solver for similar accuracy. mGNOs can also be used to solve inverse design and shape optimization problems on complex geometries.
- Abstract(参考訳): 物理インフォームド・ニューラル演算子は、データと物理損失を組み合わせた偏微分方程式(PDE)の解演算子を学習するための強力なフレームワークを提供する。
しかし、これらの物理学的な損失は微分に依存する。
これらの微分の計算は、スペクトルと有限差分法が有限分解能による近似誤差を導入し、依然として困難である。
そこで本研究では,自動微分と任意のジオメトリ上でのemph{exact}勾配の計算を行う最初の手法であるモリファイドグラフニューラル演算子(mGNO)を提案する。
この強化により、不規則な格子や様々な測地での効率的なトレーニングが可能となり、無作為なサンプリング点における物理損失のシームレスな評価が可能となり、一般化が向上する。
正規格子上のPDEの例では、mGNOとオートグレードの組み合わせにより、トレーニングが遅いにもかかわらず、L2相対データの誤差は有限差の20倍減少した。
また、物理損失のみを使用し、有限差分に必要な分解能よりもはるかに低い精度で、非構造化点雲上のPDEをシームレスに解くことができる。
これらの非構造化ポイントクラウドでは、mGNOは、同等のランタイムの機械学習ベースライン(Meta-PDE)よりも2桁低いエラーにつながると同時に、同様の精度で数値解法と比較して1~3桁のスピードアップを提供する。
mGNOは複素幾何学上の逆設計と形状最適化の問題を解決するためにも用いられる。
関連論文リスト
- Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
圧縮可能なNavier-Stokes方程式を解くためのエンドツーエンドの微分可能なフレームワークを提案する。
この統合アプローチは、微分可能不連続なガレルキン解法とニューラルネットワークのソース項を組み合わせる。
提案するフレームワークの性能を2つの例で示す。
論文 参考訳(メタデータ) (2023-10-29T04:26:23Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)の解の強力な近似器である
PINN(AL-PINN)のための拡張ラグランジアン緩和法を提案する。
AL-PINNは、最先端の適応的損失分散アルゴリズムと比較して、相対誤差がはるかに小さいことを様々な数値実験で示している。
論文 参考訳(メタデータ) (2022-04-29T08:33:11Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。