論文の概要: Spherical Principal Curves
- arxiv url: http://arxiv.org/abs/2003.02578v3
- Date: Wed, 26 May 2021 07:11:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 07:28:32.914708
- Title: Spherical Principal Curves
- Title(参考訳): 球状主曲線
- Authors: Jang-Hyun Kim, Jongmin Lee, Hee-Seok Oh
- Abstract要約: 連続曲線へのデータの投影により球面上の主曲線を構成する新しい手法を提案する。
我々のアプローチは、ユークリッド空間データに対する主曲線を提案したHastie and Stuetzle (1989) と同じ直線にある。
- 参考スコア(独自算出の注目度): 16.095213132052987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a new approach for dimension reduction of data observed
in a sphere. Several dimension reduction techniques have recently developed for
the analysis of non-Euclidean data. As a pioneer work, Hauberg (2016) attempted
to implement principal curves on Riemannian manifolds. However, this approach
uses approximations to deal with data on Riemannian manifolds, which causes
distorted results. In this study, we propose a new approach to construct
principal curves on a sphere by a projection of the data onto a continuous
curve. Our approach lies in the same line of Hastie and Stuetzle (1989) that
proposed principal curves for Euclidean space data. We further investigate the
stationarity of the proposed principal curves that satisfy the self-consistency
on a sphere. Results from real data analysis with earthquake data and
simulation examples demonstrate the promising empirical properties of the
proposed approach.
- Abstract(参考訳): 本稿では,球面で観測されたデータの次元減少に対する新しいアプローチを提案する。
近年,非ユークリッドデータの解析のためにいくつかの次元低減技術が開発されている。
先駆的な研究として、Hauberg (2016) はリーマン多様体上の主曲線の実装を試みた。
しかし、このアプローチは近似を用いてリーマン多様体のデータを扱い、歪んだ結果を引き起こす。
本研究では,データの連続曲線への投影によって球面上の主曲線を構成する新しい手法を提案する。
我々のアプローチは、ユークリッド空間データに対する主曲線を提案したHastie and Stuetzle (1989) と同じ直線にある。
さらに,球面上の自己整合性を満たす主曲線の定常性について検討する。
地震データとシミュレーション例を用いた実データ解析の結果,提案手法の有望な経験的特性が示された。
関連論文リスト
- On Probabilistic Pullback Metrics on Latent Hyperbolic Manifolds [5.724027955589408]
本稿では,階層関係のモデル化に適した双曲多様体について述べる。
本稿では,VM の非線形写像によって生じる歪みを考慮に入れたプルバックメトリックによる双曲的計量の増大を提案する。
様々な実験を通して、引き戻し距離の測地学は双曲ラテント空間の幾何学を尊重するだけでなく、基礎となるデータ分布と整合することを示した。
論文 参考訳(メタデータ) (2024-10-28T09:13:00Z) - Score-based pullback Riemannian geometry [10.649159213723106]
本稿では,データ駆動型リーマン幾何学のフレームワークを提案する。
データサポートを通して高品質な測地学を作成し、データ多様体の固有次元を確実に推定する。
我々のフレームワークは、訓練中に等方性正規化を採用することで、自然に異方性正規化フローで使用することができる。
論文 参考訳(メタデータ) (2024-10-02T18:52:12Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Short and Straight: Geodesics on Differentiable Manifolds [6.85316573653194]
本研究では,測地線長を最小化するための既存の手法をまず解析する。
次に,連続多様体上の距離場と測地流のモデルに基づくパラメータ化を提案する。
第3に,Ricciスカラーのより大きい値を示す多様体の領域において,曲率に基づくトレーニング機構,サンプリングおよびスケーリングポイントを開発する。
論文 参考訳(メタデータ) (2023-05-24T15:09:41Z) - Riemannian Diffusion Schr\"odinger Bridge [56.20669989459281]
拡散モデルのサンプリングを高速化するために,emphRiemannian Diffusion Schr"odinger Bridgeを導入する。
提案手法は, 合成データと実際の地球・気候データについて検証する。
論文 参考訳(メタデータ) (2022-07-07T00:35:04Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
ほとんどの既存の多様体学習アルゴリズムは、元のデータを低次元座標で置き換える。
本稿では,これらの問題に対処するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-14T15:50:38Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
オフライン強化学習アプローチは、近近法と不確実性認識法に分けられる。
本研究では,この2つを潜在変動モデルに組み合わせることのメリットを実証する。
提案したメトリクスは、分布サンプルのアウトの品質と、データ内のサンプルの不一致の両方を測定します。
論文 参考訳(メタデータ) (2021-02-22T19:42:40Z) - On the minmax regret for statistical manifolds: the role of curvature [68.8204255655161]
2つの部分のコードと最小記述長は、最高のモデルを選別するための手順を提供するのに成功している。
我々は、フィッシャー情報計量のスカラー曲率が支配的な役割を果たす複雑さによって与えられる標準表現よりも、よりシャープな表現を導出する。
論文 参考訳(メタデータ) (2020-07-06T17:28:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。