論文の概要: PFNN: A Penalty-Free Neural Network Method for Solving a Class of
Second-Order Boundary-Value Problems on Complex Geometries
- arxiv url: http://arxiv.org/abs/2004.06490v2
- Date: Thu, 17 Dec 2020 12:21:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 10:15:52.745967
- Title: PFNN: A Penalty-Free Neural Network Method for Solving a Class of
Second-Order Boundary-Value Problems on Complex Geometries
- Title(参考訳): pfnn:複素幾何学上の二階境界値問題のクラスを解くペナルティフリーニューラルネットワーク法
- Authors: Hailong Sheng and Chao Yang
- Abstract要約: 本稿では,2次境界値問題のクラスを解くために,ペナルティのないニューラルネットワーク手法であるPFNNを提案する。
PFNNは、精度、柔軟性、堅牢性の点で、既存のいくつかのアプローチよりも優れている。
- 参考スコア(独自算出の注目度): 4.620110353542715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present PFNN, a penalty-free neural network method, to efficiently solve a
class of second-order boundary-value problems on complex geometries. To reduce
the smoothness requirement, the original problem is reformulated to a weak form
so that the evaluations of high-order derivatives are avoided. Two neural
networks, rather than just one, are employed to construct the approximate
solution, with one network satisfying the essential boundary conditions and the
other handling the rest part of the domain. In this way, an unconstrained
optimization problem, instead of a constrained one, is solved without adding
any penalty terms. The entanglement of the two networks is eliminated with the
help of a length factor function that is scale invariant and can adapt with
complex geometries. We prove the convergence of the PFNN method and conduct
numerical experiments on a series of linear and nonlinear second-order
boundary-value problems to demonstrate that PFNN is superior to several
existing approaches in terms of accuracy, flexibility and robustness.
- Abstract(参考訳): 複素測地における2階境界値問題のクラスを効率的に解くために, ペナルティのないニューラルネットワーク手法であるPFNNを提案する。
滑らかさの要求を減らすため、元の問題は弱形式に再構成され、高階導関数の評価は避けられる。
1つではなく2つのニューラルネットワークを用いて近似解を構築し、1つのネットワークが必須境界条件を満たし、もう1つはドメインの残りの部分を処理している。
このように、制約付き最適化ではなく、制約付き最適化問題は、ペナルティ項を追加することなく解決される。
2つのネットワークの絡み合いは、スケール不変で複雑なジオメトリに適応できる長さ係数関数の助けを借りて解消される。
本稿では,pfnn法の収束を証明し,線形および非線形の2次境界値問題に対する数値実験を行い,pfnnが既存の手法よりも精度,柔軟性,頑健性において優れていることを示す。
関連論文リスト
- General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
我々は,Singular Perturbation Differential Equations(SPDE)の解法として,GKPINN(General-Kindred Physics-Informed Neural Network)を提案する。
この手法は, 境界層の事前知識を方程式から利用し, 境界層を近似するPINNを支援する新しいネットワークを確立する。
GKPINNは,確立したPINN法と比較して,2~4桁の誤差を2~4桁に削減し,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2024-08-27T02:03:22Z) - WANCO: Weak Adversarial Networks for Constrained Optimization problems [5.257895611010853]
まず、拡張ラグランジアン法を用いてミニマックス問題をミニマックス問題に変換する。
次に、それぞれ原始変数と双対変数を表すために、2つの(または複数の)ディープニューラルネットワークを使用します。
ニューラルネットワークのパラメータは、敵のプロセスによって訓練される。
論文 参考訳(メタデータ) (2024-07-04T05:37:48Z) - Correctness Verification of Neural Networks Approximating Differential
Equations [0.0]
ニューラルネットワーク(NN)は部分微分方程式(PDE)の解を近似する
NNはシミュレーションソフトウェアツールの不可欠な部分となり、複雑な動的システムのシミュレーションを100回以上加速することができる。
この研究は、NN微分を有限差分近似として定義することにより、これらの関数の検証に対処する。
初めて、出力領域の事前知識のないNN関数のバウンダリング問題に取り組む。
論文 参考訳(メタデータ) (2024-02-12T12:55:35Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - A multiobjective continuation method to compute the regularization path of deep neural networks [1.3654846342364308]
数値効率を保証し、モデルの解釈性を改善し、堅牢性を向上させるため、ディープニューラルネットワーク(DNN)では、スパシティは高い特徴である。
本稿では,数百万のパラメータを持つ高次元勾配に対して,上述の目的に対するスパースフロント全体を極めて効率的な方法で実現するアルゴリズムを提案する。
正規化パスの知識がネットワークパラメトリゼーションを十分に一般化することを示す。
論文 参考訳(メタデータ) (2023-08-23T10:08:52Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - CENN: Conservative energy method based on neural network with subdomains
for solving heterogeneous problems involving complex geometries [6.782934398825898]
ニューラルネットワークを用いた保守的エネルギー手法(CENN)を提案する。
境界ペナルティのない必須境界条件を満たす許容関数は、放射基底関数、特に解ニューラルネットワーク、一般ニューラルネットワークによって構成される。
提案手法をいくつかの代表例に適用し, 強い不連続性, 特異性, 複素境界, 非線型および不均一なPDE問題をモデル化する能力を示す。
論文 参考訳(メタデータ) (2021-09-25T09:52:51Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
定常点に収束する一般化外空間を提案する。
このアルゴリズムは一般の$p$ノルド空間だけでなく、一般の$p$次元ベクトル空間にも適用される。
論文 参考訳(メタデータ) (2020-10-31T21:35:42Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
有限幅2層ReLUネットワークの解析のための凸解析手法を開発した。
正規化学習問題に対する最適解が凸集合の極点として特徴づけられることを示す。
高次元では、トレーニング問題は無限に多くの制約を持つ有限次元凸問題としてキャストできることが示される。
論文 参考訳(メタデータ) (2020-02-25T23:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。