論文の概要: Quantum vs. classical algorithms for solving the heat equation
- arxiv url: http://arxiv.org/abs/2004.06516v2
- Date: Thu, 18 Jun 2020 10:39:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 08:48:15.627183
- Title: Quantum vs. classical algorithms for solving the heat equation
- Title(参考訳): 量子対古典アルゴリズムによる熱方程式解法
- Authors: Noah Linden, Ashley Montanaro and Changpeng Shao
- Abstract要約: 量子コンピュータは、おそらく指数関数的に偏微分方程式を解くために古典的よりも優れていると予測されている。
ここでは、矩形領域における熱方程式である原始型PDEを考察し、それを解くための10の古典的および量子的アルゴリズムの複雑さを詳細に比較する。
- 参考スコア(独自算出の注目度): 0.04297070083645048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers are predicted to outperform classical ones for solving
partial differential equations, perhaps exponentially. Here we consider a
prototypical PDE - the heat equation in a rectangular region - and compare in
detail the complexities of ten classical and quantum algorithms for solving it,
in the sense of approximately computing the amount of heat in a given region.
We find that, for spatial dimension $d \ge 2$, there is an at most quadratic
quantum speedup using an approach based on applying amplitude estimation to an
accelerated classical random walk. However, an alternative approach based on a
quantum algorithm for linear equations is never faster than the best classical
algorithms.
- Abstract(参考訳): 量子コンピュータは、おそらく指数関数的に偏微分方程式を解くために古典的よりも優れていると予測されている。
ここでは、矩形領域における熱方程式である原始型PDEを考察し、与えられた領域における熱の量を概算するという意味で、10の古典的および量子的アルゴリズムの複雑さを詳細に比較する。
空間次元 $d \ge 2$ に対して、加速された古典的ランダムウォークに振幅推定を適用することに基づくアプローチを用いて、最大2次量子スピードアップが存在することが分かる。
しかし、線形方程式に対する量子アルゴリズムに基づく別のアプローチは、最高の古典的アルゴリズムよりも高速ではない。
関連論文リスト
- Optimization by Decoded Quantum Interferometry [43.55132675053983]
本稿では,古典的復号化問題に対する古典的最適化問題を減じるための量子アルゴリズムを提案する。
DQIは、既知の量子時間古典アルゴリズムよりも近似比が良いことを示す。
論文 参考訳(メタデータ) (2024-08-15T17:47:42Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Quantum and classical algorithms for nonlinear unitary dynamics [0.5729426778193399]
我々は$fracd|urangledtという形の非線形微分方程式に対する量子アルゴリズムを提案する。
また,Euler法に基づく古典的アルゴリズムを導入し,制限された場合の量子アルゴリズムへのコンパラブルなスケーリングを実現する。
論文 参考訳(メタデータ) (2024-07-10T14:08:58Z) - Nonlinear dynamics as a ground-state solution on quantum computers [39.58317527488534]
量子ビットレジスタにおける空間と時間の両方を符号化する変分量子アルゴリズム(VQA)を提案する。
時空符号化により、1つの基底状態計算から全時間進化を得ることができる。
論文 参考訳(メタデータ) (2024-03-25T14:06:18Z) - A quantum advantage over classical for local max cut [48.02822142773719]
量子最適化近似アルゴリズム(QAOA)は、次数3グラフ上の古典的手法に匹敵する計算上の優位性を持つ。
結果として、最先端の量子ハードウェアに関係している小規模量子計算でさえ、比較可能な単純な古典よりも大きな優位性を持つ可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-17T16:42:05Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Quantum-accelerated multilevel Monte Carlo methods for stochastic
differential equations in mathematical finance [1.128265591164748]
我々は微分方程式(SDE)の量子アルゴリズムを研究する。
我々は,モンテカルロ法を一般設定で2次高速化する量子アルゴリズムを提案する。
我々は,このアルゴリズムを,数学的なファイナンスに起因した様々な応用で実演する。
論文 参考訳(メタデータ) (2020-12-11T12:34:55Z) - Simpler (classical) and faster (quantum) algorithms for Gibbs partition
functions [4.2698418800007865]
古典ハミルトニアンの分配関数を所定の温度で近似するための古典的および量子的アルゴリズムを提案する。
我々は,vStefankovivc,Vempala,Vigodaの古典的アルゴリズムを改良し,サンプルの複雑さを改善する。
我々はこの新しいアルゴリズムを量子化し、HarrowとWeiにより、この問題に対してこれまで最速の量子アルゴリズムを改善した。
論文 参考訳(メタデータ) (2020-09-23T17:27:28Z) - Quantum Assisted Eigensolver [0.0]
本研究では,ハミルトニアンの基底状態と基底状態エネルギーを近似するハイブリッド量子古典アルゴリズムを提案する。
アルゴリズムの量子部分からの出力を古典コンピュータの入力として利用する。
論文 参考訳(メタデータ) (2020-09-23T08:33:18Z) - High-precision quantum algorithms for partial differential equations [1.4050836886292872]
量子コンピュータは、古典的アルゴリズムよりも指数関数的に高速な微分方程式系の解の量子符号化を生成することができる。
適応次有限差分法とスペクトル法に基づく量子アルゴリズムを開発した。
我々のアルゴリズムは、条件数と近似誤差が有するシステムに対して、高精度な量子線形系アルゴリズムを適用している。
論文 参考訳(メタデータ) (2020-02-18T20:32:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。