論文の概要: Conceptual Design of Human-Drone Communication in Collaborative
Environments
- arxiv url: http://arxiv.org/abs/2005.00127v1
- Date: Thu, 30 Apr 2020 22:20:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 05:26:11.086088
- Title: Conceptual Design of Human-Drone Communication in Collaborative
Environments
- Title(参考訳): 協調環境におけるヒューマン・ドーンコミュニケーションの概念設計
- Authors: Hans Dermot Doran, Monika Reif, Marco Oehler, Curdin Stoehr, Pierluigi
Capone
- Abstract要約: 本稿では,農業における人力とドローンによる人間の言語に関する予備的な結果を示す。
そこで本研究では,航空機のマーシャリングによる人間とドローンのインタラクションの飛行パターンと,人-ドローンのインタラクションの人間信号処理を併用した基本的な視覚指標を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous robots and drones will work collaboratively and cooperatively in
tomorrow's industry and agriculture. Before this becomes a reality, some form
of standardised communication between man and machine must be established that
specifically facilitates communication between autonomous machines and both
trained and untrained human actors in the working environment. We present
preliminary results on a human-drone and a drone-human language situated in the
agricultural industry where interactions with trained and untrained workers and
visitors can be expected. We present basic visual indicators enhanced with
flight patterns for drone-human interaction and human signaling based on
aircraft marshaling for humane-drone interaction. We discuss preliminary
results on image recognition and future work.
- Abstract(参考訳): 自律型ロボットとドローンは、明日の産業と農業で協力的に働く。
これが現実になる前には、人間と機械の間のある種の標準化されたコミュニケーションが確立され、特に労働環境における自律的な機械と訓練を受けていない人間とのコミュニケーションを促進する必要がある。
本研究では、農業産業における人力とドローンによる人間の言語について、訓練を受けていない労働者やビジターとの対話が期待できる予備的な結果を示す。
そこで本研究では,航空機のマーシャリングによる人間とドローンのインタラクションの飛行パターンと,人-ドローンのインタラクションの人間信号処理を併用した基本的な視覚指標を提案する。
画像認識の予備結果と今後の課題について考察する。
関連論文リスト
- HARMONIC: Cognitive and Control Collaboration in Human-Robotic Teams [0.0]
メタ認知,自然言語コミュニケーション,説明可能性を備えたロボットチームにおいて,ロボットの認知戦略を実証する。
このシステムは、認知と制御機能を柔軟に統合するHARMONICアーキテクチャを使って実現されている。
論文 参考訳(メタデータ) (2024-09-26T16:48:21Z) - InteRACT: Transformer Models for Human Intent Prediction Conditioned on Robot Actions [7.574421886354134]
InteRACTアーキテクチャは、大規模な人間と人間のデータセットと小さな人間とロボットのデータセットの微細構造に関する条件付き意図予測モデルを事前訓練する。
実世界の協調的なロボット操作タスクについて評価し、条件付きモデルが様々な限界ベースラインよりも改善されていることを示す。
論文 参考訳(メタデータ) (2023-11-21T19:15:17Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - HandMeThat: Human-Robot Communication in Physical and Social
Environments [73.91355172754717]
HandMeThatは、物理的および社会的環境における命令理解とフォローの総合評価のためのベンチマークである。
HandMeThatには、人間とロボットの対話の1万エピソードが含まれている。
オフラインとオンラインの強化学習アルゴリズムはHandMeThatでは性能が良くないことを示す。
論文 参考訳(メタデータ) (2023-10-05T16:14:46Z) - Semantic-Aware Environment Perception for Mobile Human-Robot Interaction [2.309914459672557]
本稿では,移動ロボットのための視覚ベースシステムについて,アプリオリ知識を付加せずにセマンティック・アウェア環境を実現する。
実世界のアプリケーションで我々の手法をテストすることができる移動型ヒューマノイドロボットにシステムをデプロイする。
論文 参考訳(メタデータ) (2022-11-07T08:49:45Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - The role of haptic communication in dyadic collaborative object
manipulation tasks [6.46682752231823]
ヒトの協調作業における触覚の役割について検討する。
ボード上の目標位置でボールをバランスさせるタスクを提示する。
触覚フィードバックが利用可能であれば,人間同士のコーディネートがより優れていることが分かっています。
論文 参考訳(メタデータ) (2022-03-02T18:13:54Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - A proxemics game between festival visitors and an industrial robot [1.2599533416395767]
人間ロボットチームのコラボレーションパートナーの非言語的行動は、ヒューマンインタラクションパートナーの体験に影響を及ぼす。
Ars Electronica 2020 Festival for Art, Technology and Society(オーストリア、リンツ)では,産業用ロボットとの対話を招待した。
本研究では,ロボットと対話する人間の一般的な非言語行動と,聴衆の非言語行動について検討した。
論文 参考訳(メタデータ) (2021-05-28T13:26:00Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。