論文の概要: Riemannian geometry for Compound Gaussian distributions: application to
recursive change detection
- arxiv url: http://arxiv.org/abs/2005.10087v1
- Date: Wed, 20 May 2020 14:51:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 04:55:52.960864
- Title: Riemannian geometry for Compound Gaussian distributions: application to
recursive change detection
- Title(参考訳): 複ガウス分布のリーマン幾何学:再帰的変化検出への応用
- Authors: Florent Bouchard, Ammar Mian, Jialun Zhou, Salem Said, Guillaume
Ginolhac, and Yannick Berthoumieu
- Abstract要約: フィッシャー情報計量は、対応する測地線と距離関数とともに得られる。
この新たな幾何は、多変量画像時系列における変化検出問題に適用される。
シミュレーションデータに示すように、計算効率を向上しながら最適な性能に達することができる。
- 参考スコア(独自算出の注目度): 11.90288071168733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new Riemannian geometry for the Compound Gaussian distribution is proposed.
In particular, the Fisher information metric is obtained, along with
corresponding geodesics and distance function. This new geometry is applied on
a change detection problem on Multivariate Image Times Series: a recursive
approach based on Riemannian optimization is developed. As shown on simulated
data, it allows to reach optimal performance while being computationally more
efficient.
- Abstract(参考訳): 複合ガウス分布の新しいリーマン幾何学が提案されている。
特に、対応する測地線と距離関数とともにフィッシャー情報計量が得られる。
この新たな幾何は、多変量画像時系列における変化検出問題に適用され、リーマン最適化に基づく再帰的アプローチが開発された。
シミュレーションデータに示すように、計算効率を向上しながら最適な性能に達することができる。
関連論文リスト
- The Fisher-Rao geometry of CES distributions [50.50897590847961]
Fisher-Rao情報幾何学は、ツールを微分幾何学から活用することができる。
楕円分布の枠組みにおけるこれらの幾何学的ツールの実用的利用について述べる。
論文 参考訳(メタデータ) (2023-10-02T09:23:32Z) - Zeroth-order Riemannian Averaging Stochastic Approximation Algorithms [19.99781875916751]
textttZo-RASAは$epsilon$-approximation 1次定常解を生成するのに最適なサンプル複雑性を実現する。
指数写像や並列輸送の代わりに幾何とベクトル輸送を用いることで,アルゴリズムの実用性を向上させる。
論文 参考訳(メタデータ) (2023-09-25T20:13:36Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Riemannian Optimization for Variance Estimation in Linear Mixed Models [0.0]
パラメータ空間の内在的幾何を利用した線形混合モデルにおけるパラメータ推定について、全く新しい見方をとる。
提案手法は,既存手法に比べて分散パラメータ推定精度が高い。
論文 参考訳(メタデータ) (2022-12-18T13:08:45Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-maxアルゴリズムはユークリッド設定で解析されている。
指数関数法 (RCEG) が線形速度で最終収束を補正したことを証明した。
論文 参考訳(メタデータ) (2022-06-04T18:53:44Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
ほとんどの既存の多様体学習アルゴリズムは、元のデータを低次元座標で置き換える。
本稿では,これらの問題に対処するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-14T15:50:38Z) - On Riemannian Approach for Constrained Optimization Model in Extreme
Classification Problems [2.7436792484073638]
制約付き最適化問題は行列多様体上の最適化問題として定式化される。
提案手法は,複数の実世界の大規模マルチラベルデータセットで検証される。
論文 参考訳(メタデータ) (2021-09-30T11:28:35Z) - Geometric variational inference [0.0]
変分推論 (VI) またはマルコフ・チェイン・モンテカルロ (MCMC) 技術は点推定を超えて用いられる。
本研究は,リーマン幾何学とフィッシャー情報量に基づく幾何学的変分推論(geoVI)を提案する。
変換によって誘導される座標系で表される分布は、特に単純であり、正確な変分近似を可能にする。
論文 参考訳(メタデータ) (2021-05-21T17:18:50Z) - Automatic differentiation for Riemannian optimization on low-rank matrix
and tensor-train manifolds [71.94111815357064]
科学計算および機械学習アプリケーションでは、行列およびより一般的な多次元配列(テンソル)は、しばしば低ランク分解の助けを借りて近似することができる。
低ランク近似を見つけるための一般的なツールの1つはリーマン最適化を使うことである。
論文 参考訳(メタデータ) (2021-03-27T19:56:00Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
データに固有の非線形幾何学構造をモデル化する原則的な方法が提供される。
しかし、これらの演算は通常計算的に要求される。
特に、正規法則上の積分を数値計算するためにベイズ二次(bq)に焦点を当てる。
先行知識と活発な探索手法を両立させることで,BQは必要な評価回数を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2021-02-12T17:38:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。