論文の概要: Unsupervised Learning of Lagrangian Dynamics from Images for Prediction
and Control
- arxiv url: http://arxiv.org/abs/2007.01926v3
- Date: Thu, 1 Sep 2022 01:30:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 05:12:29.271284
- Title: Unsupervised Learning of Lagrangian Dynamics from Images for Prediction
and Control
- Title(参考訳): 予測・制御のための画像からのラグランジアンダイナミクスの教師なし学習
- Authors: Yaofeng Desmond Zhong, Naomi Ehrich Leonard
- Abstract要約: 画像からラグランジアン力学を学習する新しい教師なしニューラルネットワークモデルを導入する。
このモデルは、座標対応変分オートエンコーダで同時に学習される一般化座標上でラグランジアン力学を推論する。
- 参考スコア(独自算出の注目度): 12.691047660244335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent approaches for modelling dynamics of physical systems with neural
networks enforce Lagrangian or Hamiltonian structure to improve prediction and
generalization. However, when coordinates are embedded in high-dimensional data
such as images, these approaches either lose interpretability or can only be
applied to one particular example. We introduce a new unsupervised neural
network model that learns Lagrangian dynamics from images, with
interpretability that benefits prediction and control. The model infers
Lagrangian dynamics on generalized coordinates that are simultaneously learned
with a coordinate-aware variational autoencoder (VAE). The VAE is designed to
account for the geometry of physical systems composed of multiple rigid bodies
in the plane. By inferring interpretable Lagrangian dynamics, the model learns
physical system properties, such as kinetic and potential energy, which enables
long-term prediction of dynamics in the image space and synthesis of
energy-based controllers.
- Abstract(参考訳): ニューラルネットワークを用いた物理系のモデリングの最近のアプローチは、予測と一般化を改善するためにラグランジアン構造やハミルトン構造を適用している。
しかし、座標が画像などの高次元データに埋め込まれている場合、これらの手法は解釈可能性を失うか、特定の例にのみ適用できる。
我々は、イメージからラグランジアン力学を学習し、予測と制御の恩恵を受けることができる新しい教師なしニューラルネットワークモデルを導入する。
このモデルは、座標認識型変分オートエンコーダ(vae)で同時に学習される一般化座標のラグランジアンダイナミクスを推定する。
vaeは、平面内の複数の剛体からなる物理系の形状を説明するために設計された。
解釈可能なラグランジュ力学を推定することにより、モデルは運動学やポテンシャルエネルギーといった物理系の特性を学習し、画像空間におけるダイナミクスの長期予測とエネルギーベースの制御器の合成を可能にする。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
等変性を維持しながら, 2階連続性をGNNに組み込む方法を示す。
また、SEGNOに関する理論的知見も提供し、隣接する状態間の一意の軌跡を学習できることを強調している。
我々のモデルは最先端のベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-08-25T07:15:58Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Neural Modal ODEs: Integrating Physics-based Modeling with Neural ODEs
for Modeling High Dimensional Monitored Structures [9.065343126886093]
本稿では、物理に基づくモデリングとディープラーニングを統合するためのフレームワーク、Neural Modal ODEを提案する。
オートエンコーダは、観測データの最初の数項目から潜伏変数の初期値までの抽象的なマッピングを学習する。
提案モデルの復号器は, 線形化部分に適用された固有解析から導出した固有モードを物理モデルに適用する。
論文 参考訳(メタデータ) (2022-07-16T09:30:20Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control [14.24939133094439]
物理系の力学を推論できるディープラーニングフレームワークであるSymlectic ODE-Net(SymODEN)を紹介する。
特に、ハミルトン力学を制御して、基礎となる力学を透過的に学習する。
このフレームワークは、物理的システムに対して解釈可能で物理的に一貫性のあるモデルを提供することで、モデルベースの制御戦略を合成する新たな可能性を開く。
論文 参考訳(メタデータ) (2019-09-26T13:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。