論文の概要: Physics Informed Neural Networks for Simulating Radiative Transfer
- arxiv url: http://arxiv.org/abs/2009.13291v2
- Date: Mon, 5 Apr 2021 12:42:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 22:30:37.237082
- Title: Physics Informed Neural Networks for Simulating Radiative Transfer
- Title(参考訳): 放射移動シミュレーションのための物理情報ニューラルネットワーク
- Authors: Siddhartha Mishra and Roberto Molinaro
- Abstract要約: 放射能伝達をシミュレーションする新しい機械学習アルゴリズムを提案する。
提案アルゴリズムは物理情報ニューラルネットワーク(PINN)に基づいて,基礎となる放射性トランスファー方程式の残差を最小化して学習する。
- 参考スコア(独自算出の注目度): 7.6146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel machine learning algorithm for simulating radiative
transfer. Our algorithm is based on physics informed neural networks (PINNs),
which are trained by minimizing the residual of the underlying radiative
tranfer equations. We present extensive experiments and theoretical error
estimates to demonstrate that PINNs provide a very easy to implement, fast,
robust and accurate method for simulating radiative transfer. We also present a
PINN based algorithm for simulating inverse problems for radiative transfer
efficiently.
- Abstract(参考訳): 放射能伝達をシミュレーションする新しい機械学習アルゴリズムを提案する。
提案アルゴリズムは物理情報ニューラルネットワーク(PINN)に基づいて,基礎となる放射性トランスファー方程式の残差を最小化して学習する。
我々は、ピンが非常に容易に実装でき、高速で、ロバストで、正確な放射移動をシミュレートできることを示すために、広範な実験と理論誤差推定を提案する。
また, 放射伝達の逆問題を効率的にシミュレートするpinnアルゴリズムを提案する。
関連論文リスト
- Physics-informed neural networks need a physicist to be accurate: the case of mass and heat transport in Fischer-Tropsch catalyst particles [0.3926357402982764]
物理インフォームドニューラルネットワーク(PINN)は、機械学習の迅速かつ自動化された能力と、理論物理学に根ざしたシミュレーションの精度と信頼性を融合して、影響力のある技術として登場した。
しかし、PINNの広範な採用は信頼性の問題、特に入力パラメータ範囲の極端ではまだ妨げられている。
ドメイン知識に基づくPINNアーキテクチャの変更を提案する。
論文 参考訳(メタデータ) (2024-11-15T08:55:31Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
本稿では,ニューラルネットワークにおける信頼割当を行うための予測フォワード(PFF)アルゴリズムを提案する。
我々は,有向生成回路と表現回路を同時に同時に学習する,新しい動的リカレントニューラルネットワークを設計する。
PFFは効率よく学習し、学習信号を伝達し、フォワードパスのみでシナプスを更新する。
論文 参考訳(メタデータ) (2023-01-04T05:34:48Z) - Transfer Learning with Physics-Informed Neural Networks for Efficient
Simulation of Branched Flows [1.1470070927586016]
物理インフォームドニューラルネットワーク(PINN)は微分方程式を解くための有望なアプローチを提供する。
PINNに対して最近開発されたトランスファー学習アプローチを採用し,マルチヘッドモデルを提案する。
提案手法は,スクラッチからトレーニングした標準PINNと比較して,計算速度が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-11-01T01:50:00Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation [3.0969191504482243]
本研究では, 波動に基づく深部畳み込みニューラルネットワーク(Deep CNN)を提案し, スパースプローブ車両軌道から高分解能交通速度のダイナミクスを推定する。
我々は,既存の学習に基づく推定手法の堅牢性を改善するために,運動波理論の原理を取り入れるための2つの重要なアプローチを導入する。
論文 参考訳(メタデータ) (2021-02-04T21:51:25Z) - Predicting atmospheric optical properties for radiative transfer
computations using neural networks [0.0]
我々は、現代の放射パラメータ化(RRTMGP)をエミュレートするためにニューラルネットワークを訓練することで、ガス光学特性の機械学習に基づくパラメトリゼーションを開発する。
我々のニューラルネットワークベースのガス光学パラメトリゼーションは、ニューラルネットワークのサイズによって、RRTMGPの最大4倍高速である。
機械学習に基づくパラメトリゼーションは、高い精度を維持しつつ、放射移動計算を高速化することができると結論付けている。
論文 参考訳(メタデータ) (2020-05-05T15:00:58Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Physics-informed deep learning for incompressible laminar flows [13.084113582897965]
流体力学のための物理インフォームドニューラルネットワーク(PINN)の混合可変方式を提案する。
パラメトリック研究では、混合変数スキームがPINNのトレーニング容易性と解の精度を向上させることが示されている。
論文 参考訳(メタデータ) (2020-02-24T21:51:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。