論文の概要: Permutation invariant networks to learn Wasserstein metrics
- arxiv url: http://arxiv.org/abs/2010.05820v4
- Date: Fri, 26 Feb 2021 21:18:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 06:22:36.831148
- Title: Permutation invariant networks to learn Wasserstein metrics
- Title(参考訳): ワッサーシュタイン計量学習のための置換不変ネットワーク
- Authors: Arijit Sehanobish, Neal Ravindra, David van Dijk
- Abstract要約: 置換不変ネットワークを用いて、確率測度からのサンプルを低次元空間にマッピングする。
我々のネットワークは、目に見えない密度間の距離を正確に計算できるように一般化できることが示される。
また、これらのネットワークは確率分布の第1と第2の瞬間を学習できることを示す。
- 参考スコア(独自算出の注目度): 7.04719493717788
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the space of probability measures on a metric space equipped
with a Wasserstein distance is one of the fundamental questions in mathematical
analysis. The Wasserstein metric has received a lot of attention in the machine
learning community especially for its principled way of comparing
distributions. In this work, we use a permutation invariant network to map
samples from probability measures into a low-dimensional space such that the
Euclidean distance between the encoded samples reflects the Wasserstein
distance between probability measures. We show that our network can generalize
to correctly compute distances between unseen densities. We also show that
these networks can learn the first and the second moments of probability
distributions.
- Abstract(参考訳): ワッサーシュタイン距離を持つ距離空間上の確率測度の空間を理解することは、数学的解析における基本的な問題の一つである。
Wassersteinメトリックは、特に分散を比較する原則的な方法によって、機械学習コミュニティで多くの注目を集めている。
本研究では,確率測度からサンプルを低次元空間にマッピングする置換不変量ネットワークを用いて,符号化されたサンプル間のユークリッド距離が確率測度間のワッサースタイン距離を反映していることを示す。
我々のネットワークは、目に見えない密度間の距離を正確に計算できることを示す。
また、これらのネットワークは確率分布の第1と第2の瞬間を学習できることを示す。
関連論文リスト
- Point Cloud Classification via Deep Set Linearized Optimal Transport [51.99765487172328]
我々は,点雲をL2-$spaceに効率的に同時埋め込むアルゴリズムであるDeep Set Linearized Optimal Transportを紹介した。
この埋め込みはワッサーシュタイン空間内の特定の低次元構造を保持し、点雲の様々なクラスを区別する分類器を構成する。
我々は,有限個のラベル付き点雲を持つフローデータセットの実験を通じて,標準的な深層集合アプローチに対するアルゴリズムの利点を実証する。
論文 参考訳(メタデータ) (2024-01-02T23:26:33Z) - Computing the Distance between unbalanced Distributions -- The flat
Metric [0.0]
平坦計量は、よく知られたワッサーシュタイン距離 W1 を、分布が不等質量である場合に一般化する。
この手法のコアはニューラルネットワークに基づいて、2つの測度間の距離を実現する最適なテスト関数を決定する。
論文 参考訳(メタデータ) (2023-08-02T09:30:22Z) - Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction [40.73187749820041]
メッシュ変形は、動的シミュレーション、レンダリング、再構成を含む多くの3次元視覚タスクにおいて重要な役割を果たす。
現在のディープラーニングにおける一般的なアプローチは、2つのメッシュからランダムにサンプリングされた2つの点雲とシャンファーの擬似距離を比較することで、2つの面間の差を測定するセットベースアプローチである。
本稿では,メッシュのスライスされたワッサーシュタイン距離を,セットベースアプローチを一般化する確率測度として表現したメッシュ変形の学習指標を提案する。
論文 参考訳(メタデータ) (2023-05-27T19:10:19Z) - Energy-Based Sliced Wasserstein Distance [47.18652387199418]
スライスされたワッサーシュタイン(SW)距離の鍵成分はスライス分布である。
本研究では,スライシング分布をパラメータフリーなエネルギーベース分布として設計する。
次に、新しいスライスされたワッセルシュタイン計量、エネルギーベースのスライスされたワッセルシュタイン距離(EBSW)を導出する。
論文 参考訳(メタデータ) (2023-04-26T14:28:45Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap は、ワーッサーシュタイン空間の低次元構造を明らかにするための計算可能なアルゴリズムである。
我々は,LOT Wassmapが正しい埋め込みを実現し,サンプルサイズの増加とともに品質が向上することを示す。
また、LOT Wassmapがペア距離計算に依存するアルゴリズムと比較して計算コストを大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-02-14T22:12:16Z) - Wasserstein Iterative Networks for Barycenter Estimation [80.23810439485078]
生成モデルを用いて連続測度のワッサーシュタイン2バリセンターを近似するアルゴリズムを提案する。
有名人の顔のデータセットに基づいて、バリセンタアルゴリズムの定量的評価に使用できるAve, celeba!データセットを構築した。
論文 参考訳(メタデータ) (2022-01-28T16:59:47Z) - Depth-based pseudo-metrics between probability distributions [1.1470070927586016]
本研究では,データ深度に基づく連続確率測度と関連する中央領域の2つの疑似測度を提案する。
Wasserstein距離とは対照的に、提案された疑似メトリックは次元の呪いに苦しむことはない。
地域ベースの擬似メトリックは堅牢なw.r.tである。
両端と尾が重い。
論文 参考訳(メタデータ) (2021-03-23T17:33:18Z) - Learning High Dimensional Wasserstein Geodesics [55.086626708837635]
高次元の2つの確率分布の間のワッサーシュタイン測地線を計算するための新しい定式化と学習戦略を提案する。
ラグランジュ乗算器の手法を最適輸送(OT)問題の動的定式化に適用することにより、サドル点がワッサーシュタイン測地線であるミニマックス問題を導出する。
次に、深層ニューラルネットワークによる関数のパラメータ化を行い、トレーニングのためのサンプルベースの双方向学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-02-05T04:25:28Z) - Two-sample Test using Projected Wasserstein Distance [18.46110328123008]
統計学と機械学習の基本的な問題である2サンプルテストのための予測されたワッサースタイン距離を開発する。
重要な貢献は、投影された確率分布の間のワッサーシュタイン距離を最大化する低次元線型写像を見つけるために最適射影を結合することである。
論文 参考訳(メタデータ) (2020-10-22T18:08:58Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
本稿では, アンカー・エナジー (AE) とアンカー・ワッサースタイン (AW) 距離を紹介する。
我々の主な貢献は、素案実装が立方体となる対数四重項時間でAEを正確に計算するスイープラインアルゴリズムを提案することである。
AE と AW は,一般的な GW 近似の計算コストのごく一部において,様々な実験環境において良好に動作することを示す。
論文 参考訳(メタデータ) (2020-02-05T03:09:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。