論文の概要: On the cost of Bayesian posterior mean strategy for log-concave models
- arxiv url: http://arxiv.org/abs/2010.06420v2
- Date: Mon, 14 Feb 2022 10:28:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 13:00:38.019375
- Title: On the cost of Bayesian posterior mean strategy for log-concave models
- Title(参考訳): 対数凹モデルに対するベイズ平均後方戦略のコストについて
- Authors: S\'ebastien Gadat, Fabien Panloup, Cl\'ement Pellegrini
- Abstract要約: 本稿では,Langevin Monte-Carlo型近似を用いたベイズ推定器の計算問題を考察する。
モデルの基礎となるポアンカー定数に関連するいくつかの統計的境界を確立する。
我々は、(過減衰)ランゲヴィン拡散のオイラースキームのセサロ平均によるギブズ測度の数値近似に関する新しい結果を確立する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate the problem of computing Bayesian estimators
using Langevin Monte-Carlo type approximation. The novelty of this paper is to
consider together the statistical and numerical counterparts (in a general
log-concave setting). More precisely, we address the following question: given
$n$ observations in $\mathbb{R}^q$ distributed under an unknown probability
$\mathbb{P}_{\theta^\star}$ with $\theta^\star \in \mathbb{R}^d$ , what is the
optimal numerical strategy and its cost for the approximation of $\theta^\star$
with the Bayesian posterior mean? To answer this question, we establish some
quantitative statistical bounds related to the underlying Poincar\'e constant
of the model and establish new results about the numerical approximation of
Gibbs measures by Cesaro averages of Euler schemes of (over-damped) Langevin
diffusions. These last results include in particular some quantitative controls
in the weakly convex case based on new bounds on the solution of the related
Poisson equation of the diffusion.
- Abstract(参考訳): 本稿では,Langevin Monte-Carlo型近似を用いたベイズ推定器の計算問題について検討する。
本論文の目新しさは,統計量と数値値の組み合わせを検討することである。
より正確には、$\mathbb{R}^q$が未知の確率で分布する$\mathbb{P}_{\theta^\star}$と$\theta^\star \in \mathbb{R}^d$とすると、最適な数値戦略と$\theta^\star$とベイズ平均の近似のコストはどうなるか。
この疑問に答えるために,モデルの基礎となるポアンカル定数に関連する定量的統計境界を確立し,(過減衰)ランジュバン拡散のオイラースキームのチェサロ平均によるギブズ測度の数値近似に関する新しい結果を確立した。
これらの最後の結果は、特に拡散のポアソン方程式の解の新たな境界に基づく弱凸の場合の定量的制御を含む。
関連論文リスト
- Outlier-robust Mean Estimation near the Breakdown Point via Sum-of-Squares [4.335413713700667]
我々は citekothari2018robust で導入された正準平方和プログラムを新たに解析する。
このプログラムは,すべての $varepsilon に対して[0,frac12)$ の誤差率を効率よく達成できることを示す。
論文 参考訳(メタデータ) (2024-11-21T16:57:05Z) - Unbiased Kinetic Langevin Monte Carlo with Inexact Gradients [0.8749675983608172]
動力学的ランゲヴィンダイナミクスに基づく後進手段の非バイアス化手法を提案する。
提案した推定器は偏りがなく、有限分散となり、中心極限定理を満たす。
以上の結果から、大規模アプリケーションでは、非バイアスアルゴリズムは「ゴールドスタンダード」なハミルトニアン・モンテカルロよりも2~3桁効率が良いことが示された。
論文 参考訳(メタデータ) (2023-11-08T21:19:52Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Robust computation of optimal transport by $\beta$-potential
regularization [79.24513412588745]
最適輸送(OT)は、確率分布間の差を測定する機械学習分野で広く使われているツールである。
我々は、いわゆる$beta$-divergenceに付随するベータポテンシャル項でOTを正規化することを提案する。
提案アルゴリズムで計算した輸送行列は,外乱が存在する場合でも確率分布を頑健に推定するのに役立つことを実験的に実証した。
論文 参考訳(メタデータ) (2022-12-26T18:37:28Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
我々は、任意の分布上でニューラルネットワークパラメータを補間する頑健性の低い$Omega(sqrtn/p)$を証明した。
次に、$n=mathrmpoly(d)$のとき、スムーズなデータに対する過度なパラメータ化の利点を示す。
我々は、$n=exp(omega(d))$ のとき、$O(1)$-Lipschitz の頑健な補間関数の存在を否定する。
論文 参考訳(メタデータ) (2022-02-23T16:10:23Z) - Robust Linear Predictions: Analyses of Uniform Concentration, Fast Rates
and Model Misspecification [16.0817847880416]
ヒルベルト空間上の様々な線形予測問題を含む統一的なフレームワークを提供する。
誤特定レベル $epsilon$ に対して、これらの推定器は、文献で最もよく知られたレートと一致する、$O(maxleft|mathcalO|1/2n-1/2, |mathcalI|1/2n-1 right+epsilon)$ の誤差率を達成する。
論文 参考訳(メタデータ) (2022-01-06T08:51:08Z) - Distributionally Robust Prescriptive Analytics with Wasserstein Distance [10.475438374386886]
本稿では、ワッサーシュタイン曖昧性集合の下での新しい分布的ロバストなアプローチを提案する。
固有分布は、ワッサーシュタイン距離の下での実際の条件分布に収束することを示す。
論文 参考訳(メタデータ) (2021-06-10T13:08:17Z) - Wasserstein distance estimates for the distributions of numerical
approximations to ergodic stochastic differential equations [0.3553493344868413]
エルゴード微分方程式のイン分布と強い対数凸の場合の分布との間のワッサースタイン距離について検討した。
これにより、過減衰および過減衰ランジュバン力学の文献で提案されている多くの異なる近似を統一的に研究することができる。
論文 参考訳(メタデータ) (2021-04-26T07:50:04Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
データに固有の非線形幾何学構造をモデル化する原則的な方法が提供される。
しかし、これらの演算は通常計算的に要求される。
特に、正規法則上の積分を数値計算するためにベイズ二次(bq)に焦点を当てる。
先行知識と活発な探索手法を両立させることで,BQは必要な評価回数を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2021-02-12T17:38:04Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - A diffusion approach to Stein's method on Riemannian manifolds [65.36007959755302]
我々は、ターゲット不変測度を持つ$mathbf M$上の拡散の生成元と、その特徴付けStein演算子との関係を利用する。
我々は、スタイン方程式とその微分に解を束縛するスタイン因子を導出する。
我々は、$mathbf M$ が平坦多様体であるとき、$mathbb Rm$ の有界が有効であることを暗示する。
論文 参考訳(メタデータ) (2020-03-25T17:03:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。