論文の概要: An exactly solvable ansatz for statistical mechanics models
- arxiv url: http://arxiv.org/abs/2010.07423v1
- Date: Wed, 14 Oct 2020 22:30:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-29 02:26:37.266080
- Title: An exactly solvable ansatz for statistical mechanics models
- Title(参考訳): 統計力学モデルのための完全可解アンサッツ
- Authors: Isaac H. Kim
- Abstract要約: 本稿では,2次元統計力学モデルの分割関数を近似するために,「正確に解ける」確率分布の族を提案する。
分布は平均場フレームワークの厳密に外にあるが、その自由エネルギーはシステムサイズと線形にスケールする時間で計算できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a family of "exactly solvable" probability distributions to
approximate partition functions of two-dimensional statistical mechanics
models. While these distributions lie strictly outside the mean-field
framework, their free energies can be computed in a time that scales linearly
with the system size. This construction is based on a simple but nontrivial
solution to the marginal problem. We formulate two non-linear constraints on
the set of locally consistent marginal probabilities that simultaneously (i)
ensure the existence of a consistent global probability distribution and (ii)
lead to an exact expression for the maximum global entropy.
- Abstract(参考訳): 本稿では,2次元統計力学モデルの分割関数を近似する「正確に解ける」確率分布の族を提案する。
これらの分布は平均場フレームワークの外側に厳密に存在するが、その自由エネルギーはシステムサイズに線形にスケールする時間で計算できる。
この構成は、限界問題に対する単純だが非自明な解に基づいている。
局所一貫した境界確率の集合に同時に2つの非線形制約を定式化する。
(i)一貫した大域的確率分布の存在を保証し、
(ii) 最大大域エントロピーの正確な表現が導かれる。
関連論文リスト
- A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization [11.034091190797671]
本稿では, 関東ロビッチ輸送コスト, 測定可能な損失関数, および有意な確率分布を抑えるような, 分散的ロバストな最適化のための一般化双対性結果を提案する。
我々は、ある可測射影と弱い可測選択条件が満たされている場合にのみ、交換可能性原理が成立することを示した。
論文 参考訳(メタデータ) (2022-04-30T22:49:01Z) - Categorical Distributions of Maximum Entropy under Marginal Constraints [0.0]
限界制約下でのカテゴリー分布の推定は、多くの機械学習およびデータ駆動アプローチにおいて鍵となる。
限界制約下での最大エントロピーのカテゴリー分布が常に存在することを保証するパラメータに依存しない理論的枠組みを提供する。
論文 参考訳(メタデータ) (2022-04-07T12:42:58Z) - Probabilistic learning inference of boundary value problem with
uncertainties based on Kullback-Leibler divergence under implicit constraints [0.0]
本稿では,境界値問題に対する後続確率モデルを事前確率モデルから推定できる確率論的学習推定法を提案する。
制約を表す暗黙マッピングの統計的代理モデルを導入する。
第2部では、提案した理論を説明するために応用を提示し、また、不均一な線形弾性媒体の3次元均質化への寄与も示している。
論文 参考訳(メタデータ) (2022-02-10T16:00:10Z) - Non-Linear Spectral Dimensionality Reduction Under Uncertainty [107.01839211235583]
我々は、不確実性情報を活用し、いくつかの従来のアプローチを直接拡張する、NGEUと呼ばれる新しい次元削減フレームワークを提案する。
提案したNGEUの定式化は,大域的な閉形式解を示し,Radecherの複雑性に基づいて,基礎となる不確実性がフレームワークの一般化能力に理論的にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2022-02-09T19:01:33Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
我々は,高次元ロバストな統計問題を解くためにGAN(Generative Adversarial Networks)を設計するためのフレームワークを提供する。
我々の研究は、これらをロバスト平均推定、第二モーメント推定、ロバスト線形回帰に拡張する。
技術面では、提案したGAN損失は、スムーズで一般化されたコルモゴロフ-スミルノフ距離と見なすことができる。
論文 参考訳(メタデータ) (2022-02-02T20:11:33Z) - Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization [106.70006655990176]
分散最適化問題は機械学習や統計学で広く発生する。
本稿では,変分輸送と呼ばれる粒子に基づく新しいアルゴリズムを提案する。
目的関数がpolyak-Lojasiewicz (PL) (Polyak, 1963) の機能バージョンと滑らかな条件を満たすとき、変分輸送は線形に収束することを示す。
論文 参考訳(メタデータ) (2020-12-21T18:33:13Z) - General stochastic separation theorems with optimal bounds [68.8204255655161]
分離性の現象が明らかになり、機械学習で人工知能(AI)システムのエラーを修正し、AI不安定性を分析するために使用された。
エラーやエラーのクラスタは、残りのデータから分離することができる。
AIシステムを修正する能力は、それに対する攻撃の可能性も開き、高次元性は、同じ分離性によって引き起こされる脆弱性を誘発する。
論文 参考訳(メタデータ) (2020-10-11T13:12:41Z) - Robust Finite-State Controllers for Uncertain POMDPs [25.377873201375515]
不確実部分可観測決定過程 (uPOMDPs) により、標準POMDPの確率的遷移観測関数は不確実集合に属する。
UPOMDPの有限メモリポリシを計算するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-24T02:58:50Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z) - The empirical duality gap of constrained statistical learning [115.23598260228587]
本研究では,制約付き統計学習問題(制約なし版)について,ほぼ全ての現代情報処理のコアとなる研究を行った。
本稿では, 有限次元パラメータ化, サンプル平均, 双対性理論を利用して, 無限次元, 未知分布, 制約を克服する制約付き統計問題に取り組むことを提案する。
フェアラーニングアプリケーションにおいて,この制約付き定式化の有効性と有用性を示す。
論文 参考訳(メタデータ) (2020-02-12T19:12:29Z) - Gaussian Variational State Estimation for Nonlinear State-Space Models [0.3222802562733786]
非線形状態空間モデルに対するフィルタリングと平滑化の両面から状態推定の問題を考察する。
我々は変分推論に基づく仮定ガウス解を開発し、必要な分布を近似する柔軟なが原則化されたメカニズムの鍵となる利点を提供する。
論文 参考訳(メタデータ) (2020-02-07T04:46:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。