論文の概要: Multivariate mean estimation with direction-dependent accuracy
- arxiv url: http://arxiv.org/abs/2010.11921v1
- Date: Thu, 22 Oct 2020 17:52:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 07:51:55.376383
- Title: Multivariate mean estimation with direction-dependent accuracy
- Title(参考訳): 方向依存精度を用いた多変量平均推定
- Authors: Gabor Lugosi and Shahar Mendelson
- Abstract要約: 独立な同一分布観測に基づくランダムベクトルの平均を推定する問題を考察する。
確率ベクトルの1次元辺の分散があまり小さくない全ての方向において、ほぼ最適誤差を持つ推定器を証明した。
- 参考スコア(独自算出の注目度): 8.147652597876862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of estimating the mean of a random vector based on
$N$ independent, identically distributed observations. We prove the existence
of an estimator that has a near-optimal error in all directions in which the
variance of the one dimensional marginal of the random vector is not too small:
with probability $1-\delta$, the procedure returns $\wh{\mu}_N$ which satisfies
that for every direction $u \in S^{d-1}$, \[ \inr{\wh{\mu}_N - \mu, u}\le
\frac{C}{\sqrt{N}} \left( \sigma(u)\sqrt{\log(1/\delta)} + \left(\E\|X-\EXP
X\|_2^2\right)^{1/2} \right)~, \] where $\sigma^2(u) = \var(\inr{X,u})$ and $C$
is a constant. To achieve this, we require only slightly more than the
existence of the covariance matrix, in the form of a certain moment-equivalence
assumption.
The proof relies on novel bounds for the ratio of empirical and true
probabilities that hold uniformly over certain classes of random variables.
- Abstract(参考訳): 我々は, ランダムベクトルの平均を, 独立かつ同一に分布する観測値から推定する問題を考える。
We prove the existence of an estimator that has a near-optimal error in all directions in which the variance of the one dimensional marginal of the random vector is not too small: with probability $1-\delta$, the procedure returns $\wh{\mu}_N$ which satisfies that for every direction $u \in S^{d-1}$, \[ \inr{\wh{\mu}_N - \mu, u}\le \frac{C}{\sqrt{N}} \left( \sigma(u)\sqrt{\log(1/\delta)} + \left(\E\|X-\EXP X\|_2^2\right)^{1/2} \right)~, \] where $\sigma^2(u) = \var(\inr{X,u})$ and $C$ is a constant.
これを達成するために、あるモーメント同値な仮定の形で、共変行列の存在よりもわずかに多くしか必要としない。
この証明は、ある確率変数のクラスを均一に保持する経験的確率と真確率の比に対する新しい境界に依存する。
関連論文リスト
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
以前の$mathRd上の分布に関する民間推定者は、次元性の呪いに苦しむ。
本稿では,サンプルの複雑さが次元依存性を改善したアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-01T17:59:53Z) - Mean Estimation in High-Dimensional Binary Markov Gaussian Mixture
Models [12.746888269949407]
2進隠れマルコフモデルに対する高次元平均推定問題を考える。
ほぼ最小限の誤差率(対数係数まで)を $|theta_*|,delta,d,n$ の関数として確立する。
論文 参考訳(メタデータ) (2022-06-06T09:34:04Z) - Structure Learning in Graphical Models from Indirect Observations [17.521712510832558]
本稿では、パラメータ法と非パラメトリック法の両方を用いて、Rp$における$p$次元ランダムベクトル$Xのグラフィカル構造を学習する。
温和な条件下では、グラフ構造推定器が正しい構造を得ることができることを示す。
論文 参考訳(メタデータ) (2022-05-06T19:24:44Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
我々は、$bf K$ の固有スペクトルが$bf w$ の i.d. 成分の分布とは独立であることを示す。
3次ランダム特徴(TRF)と呼ばれる新しいランダム手法を提案する。
提案したランダムな特徴の計算には乗算が不要であり、古典的なランダムな特徴に比べてストレージに$b$のコストがかかる。
論文 参考訳(メタデータ) (2021-10-05T09:33:49Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
関数 $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
ここでは、$|mathbb E[R(z)] - tilde R(z)|_F を示す。
論文 参考訳(メタデータ) (2021-09-06T14:21:43Z) - Nonasymptotic one-and two-sample tests in high dimension with unknown
covariance structure [0.0]
テストの問題は、$mu が 0 に対して $eta-閉である場合、すなわち $|mu| geq (eta + delta)$ に対して $|mu| leq eta である。
本研究の目的は,I型とII型の両方の誤差を所定のレベルで制御できるように,最小分離距離$の漸近的上下境界を求めることである。
論文 参考訳(メタデータ) (2021-09-01T06:22:53Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
i. i. d.
形式 $Z = (1-epsilon) X + epsilon B$ の分布からのサンプル。ここで $X$ はゼロ平均で未知の共分散である Gaussian $mathcalN(0, Sigma)$ である。
汚染がない場合、事前の研究は、$O(d)$サンプルを使用するこの仮説テストタスクの単純なテスターを与えた。
サンプル複雑性の上限が $omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma であることを証明します。
論文 参考訳(メタデータ) (2020-12-31T18:24:41Z) - Optimal Mean Estimation without a Variance [103.26777953032537]
本研究では,データ生成分布の分散が存在しない環境での重み付き平均推定問題について検討する。
最小の信頼区間を$n,d,delta$の関数として得る推定器を設計する。
論文 参考訳(メタデータ) (2020-11-24T22:39:21Z) - Sparse sketches with small inversion bias [79.77110958547695]
逆バイアスは、逆の共分散に依存する量の推定を平均化するときに生じる。
本研究では、確率行列に対する$(epsilon,delta)$-unbiased estimatorという概念に基づいて、逆バイアスを解析するためのフレームワークを開発する。
スケッチ行列 $S$ が密度が高く、すなわちサブガウスのエントリを持つとき、$(epsilon,delta)$-unbiased for $(Atop A)-1$ は $m=O(d+sqrt d/ のスケッチを持つ。
論文 参考訳(メタデータ) (2020-11-21T01:33:15Z) - Optimal Sub-Gaussian Mean Estimation in $\mathbb{R}$ [5.457150493905064]
ガウス下収束を考慮した新しい推定器を提案する。
我々の推定器はその分散に関する事前の知識を必要としない。
我々の推定器の構成と分析は、他の問題に一般化可能なフレームワークを提供する。
論文 参考訳(メタデータ) (2020-11-17T02:47:24Z) - Learning Entangled Single-Sample Gaussians in the Subset-of-Signals
Model [28.839136703139225]
本研究は, 共通平均と異なる未知の分散を持つ絡み合った単一サンプルガウスの平均推定について検討する。
誤差が$O left(fracsqrtnln nmright)$m=Omega(sqrtnlnn)$の場合に高い確率でエラーを発生させることを示す。
さらに下限を証明し、エラーが$Omegaleft(left(fracnm4right)1/6right)$であることを示す。
論文 参考訳(メタデータ) (2020-07-10T18:25:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。