論文の概要: A semigroup method for high dimensional committor functions based on
neural network
- arxiv url: http://arxiv.org/abs/2012.06727v3
- Date: Wed, 5 May 2021 04:35:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-10 05:10:28.055803
- Title: A semigroup method for high dimensional committor functions based on
neural network
- Title(参考訳): ニューラルネットワークを用いた高次元コミッタ関数の半群法
- Authors: Haoya Li, Yuehaw Khoo, Yinuo Ren, Lexing Ying
- Abstract要約: 偏微分方程式を扱う代わりに、新しい手法は微分作用素の半群に基づく積分的定式化を扱う。
勾配降下型アルゴリズムは、任意の混合二階微分を計算することなく、コミッタ関数の訓練に適用することができる。
ペナルティ項によって境界条件を強制する以前の方法とは異なり、新しい方法は境界条件を自動的に考慮する。
- 参考スコア(独自算出の注目度): 1.7205106391379026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a new method based on neural networks for computing the
high-dimensional committor functions that satisfy Fokker-Planck equations.
Instead of working with partial differential equations, the new method works
with an integral formulation based on the semigroup of the differential
operator. The variational form of the new formulation is then solved by
parameterizing the committor function as a neural network. There are two major
benefits of this new approach. First, stochastic gradient descent type
algorithms can be applied in the training of the committor function without the
need of computing any mixed second-order derivatives. Moreover, unlike the
previous methods that enforce the boundary conditions through penalty terms,
the new method takes into account the boundary conditions automatically.
Numerical results are provided to demonstrate the performance of the proposed
method.
- Abstract(参考訳): 本稿では,Fokker-Planck方程式を満たす高次元コミッタ関数をニューラルネットワークで計算する手法を提案する。
偏微分方程式を扱う代わりに、新しい手法は微分作用素の半群に基づく積分的定式化を扱う。
新しい定式化の変分形式は、コミッタ関数をニューラルネットワークとしてパラメータ化することにより解決される。
この新しいアプローチには2つの大きな利点がある。
まず、確率的勾配降下型アルゴリズムは、混合二階微分を計算することなく、コミッタ関数のトレーニングに適用することができる。
さらに、ペナルティ項で境界条件を強制する従来の方法とは異なり、新しい手法では境界条件を自動的に考慮する。
提案手法の性能を示す数値的な結果を得た。
関連論文リスト
- A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimiax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - Mapping-to-Parameter Nonlinear Functional Regression with Novel B-spline
Free Knot Placement Algorithm [12.491024918270824]
非線形機能回帰に対する新しいアプローチを提案する。
このモデルは無限次元関数空間から有限次元パラメータ空間への関数データのマッピングに基づいている。
結び目配置アルゴリズムの性能は, 単一関数近似と多関数近似の両方において堅牢であることが示されている。
論文 参考訳(メタデータ) (2024-01-26T16:35:48Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
本研究では,リカレントニューラルネットワーク (R2N2) にランゲ・クッタニューラルネットワークを一般化し,リカレントニューラルネットワークを最適化した反復アルゴリズムの設計を行う。
本稿では, 線形方程式系に対するクリロフ解法, 非線形方程式系に対するニュートン・クリロフ解法, 常微分方程式に対するルンゲ・クッタ解法と類似の繰り返しを計算問題クラスの入力・出力データに対して提案した超構造内における重みパラメータの正規化について述べる。
論文 参考訳(メタデータ) (2022-11-22T16:30:33Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Learning via nonlinear conjugate gradients and depth-varying neural ODEs [5.565364597145568]
ニューラル常微分方程式(NODE)における深度可変パラメータの教師付き再構成の逆問題について考察する。
提案したパラメータ再構成は,コスト関数の最小化による一般一階微分方程式に対して行われる。
感度問題は、トレーニングされたパラメータの摂動下でのネットワーク出力の変化を推定することができる。
論文 参考訳(メタデータ) (2022-02-11T17:00:48Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - Galerkin Neural Networks: A Framework for Approximating Variational
Equations with Error Control [0.0]
本稿では,ニューラルネットワークを用いて変分方程式の解を近似する手法を提案する。
基本関数がニューラルネットワークの列の実現である有限次元部分空間の列を用いる。
論文 参考訳(メタデータ) (2021-05-28T20:25:40Z) - A semigroup method for high dimensional elliptic PDEs and eigenvalue
problems based on neural networks [1.52292571922932]
ニューラルネットワークに基づく高次元楕円偏微分方程式(PDE)と関連する固有値問題を解くための半群計算法を提案する。
PDE問題では、半群演算子の助けを借りて元の方程式を変分問題として再構成し、ニューラルネットワーク(NN)パラメータ化による変分問題を解く。
固有値問題に対して、スカラー双対変数による制約を解消する原始双対法を提案する。
論文 参考訳(メタデータ) (2021-05-07T19:49:06Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Solving high-dimensional eigenvalue problems using deep neural networks:
A diffusion Monte Carlo like approach [14.558626910178127]
固有値問題は、演算子によって誘導される半群フローの固定点問題として再構成される。
この方法は拡散モンテカルロと同様の精神を持つが、ニューラル・ネットワーク・アンサッツによる固有関数への直接近似を増大させる。
我々の手法はいくつかの数値例で正確な固有値と固有関数の近似を提供することができる。
論文 参考訳(メタデータ) (2020-02-07T03:08:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。