論文の概要: Quantum Hypothesis Testing with Group Structure
- arxiv url: http://arxiv.org/abs/2102.02194v1
- Date: Wed, 3 Feb 2021 18:46:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 22:13:29.865021
- Title: Quantum Hypothesis Testing with Group Structure
- Title(参考訳): 群構造を用いた量子仮説試験
- Authors: Zane M. Rossi, Isaac L. Chuang
- Abstract要約: 最近開発された量子信号処理技術は、量子仮説テストのためのサブルーチンを構成するように修正することができる。
性能は明示的な群準同型によって完全に定義される。
大規模グループへの拡張とノイズの多い設定について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of discriminating between many quantum channels with certainty is
analyzed under the assumption of prior knowledge of algebraic relations among
possible channels. It is shown, by explicit construction of a novel family of
quantum algorithms, that when the set of possible channels faithfully
represents a finite subgroup of SU(2) (e.g., $C_n, D_{2n}, A_4, S_4, A_5$) the
recently-developed techniques of quantum signal processing can be modified to
constitute subroutines for quantum hypothesis testing. These algorithms, for
group quantum hypothesis testing (G-QHT), intuitively encode discrete
properties of the channel set in SU(2) and improve query complexity at least
quadratically in $n$, the size of the channel set and group, compared to
na\"ive repetition of binary hypothesis testing. Intriguingly, performance is
completely defined by explicit group homomorphisms; these in turn inform simple
constraints on polynomials embedded in unitary matrices. These constructions
demonstrate a flexible technique for mapping questions in quantum inference to
the well-understood subfields of functional approximation and discrete algebra.
Extensions to larger groups and noisy settings are discussed, as well as paths
by which improved protocols for quantum hypothesis testing against structured
channel sets have application in the transmission of reference frames, proofs
of security in quantum cryptography, and algorithms for property testing.
- Abstract(参考訳): 可能なチャネル間の代数的関係の事前知識を前提として、多くの量子チャネルを確実に識別する問題は解析される。
量子アルゴリズムの新たな族を明示的に構築することにより、可能なチャネルの集合が SU(2) の有限部分群(例えば$C_n, D_{2n}, A_4, S_4, A_5$)を忠実に表すとき、最近開発された量子信号処理の技法を量子仮説テストのためのサブルーチンを構成するように変更できることが示される。
これらのアルゴリズムは、グループ量子仮説テスト(g-qht)のために、直感的に su(2) におけるチャネルセットの離散的特性を符号化し、二元仮説テストのna\" 反復と比較して、少なくとも2次的にチャンネルセットとグループのサイズである $n$ でクエリの複雑さを改善する。
興味深いことに、パフォーマンスは明示的な群準同型によって完全に定義され、これはユニタリ行列に埋め込まれた多項式に対する単純な制約を与える。
これらの構造は、量子推論における質問を関数近似と離散代数学のよく理解された部分体にマッピングする柔軟な手法を示す。
より大きなグループやノイズの多い設定への拡張、構造化されたチャネル集合に対する量子仮説テストのプロトコルの改善、参照フレームの送信、量子暗号におけるセキュリティの証明、およびプロパティテストのアルゴリズムへの応用について論じる。
関連論文リスト
- On variants of multivariate quantum signal processing and their
characterizations [0.0]
量子信号処理(QSP)は、量子コンピューティングにおいて非常に成功したアルゴリズムプリミティブである。
本稿では,Hahの一般QSPの特性を同質な2変数(交換可能な)量子信号処理に拡張できることを示す。
また、変数の1つの次数が少なくとも 1 であるとき、別の不均一な不変量に対して同様の結果を示すが、両方の変数が次数 2 を持つ反例を構成する。
論文 参考訳(メタデータ) (2023-12-14T16:06:58Z) - Semantic embedding for quantum algorithms [0.0]
高レベルの量子アルゴリズム推論の正確性を保証するために、ニーズが発展してきた。
量子信号処理(QSP)と量子特異値変換(QSVT)を用いて、多くの量子アルゴリズムが統一され、改善されている。
QSP/QSVTは、純粋に埋め込んだ関数変換の観点から、モジュール的に処理および結合可能であることを示す。
また,セマンティック埋め込みを暗黙的に利用する既存の量子アルゴリズムを,分散探索から量子暗号における音質まで同定する。
論文 参考訳(メタデータ) (2023-04-27T17:55:40Z) - Quantum signal processing with continuous variables [0.0]
量子特異値変換(QSVT)は、ユニタリ変換に埋め込まれた任意の線形作用素の特異値への関数の適用を可能にする。
本研究では,QSP型アンサッツを復元し,任意の変換を近似できることを示す。
本研究は,この構成の様々な実験的利用と,他のリー群への「QSP様アンゼ」の拡充の可能性について論じる。
論文 参考訳(メタデータ) (2023-04-27T17:50:16Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
複数の量子数の相関変化からなる相互作用のクラスを効率的にシミュレートできる量子アルゴリズムを導入する。
格子ゲージ理論は、1+1次元のSU(2)ゲージ理論であり、1つのスタッガードフェルミオンに結合する。
これらのアルゴリズムは、アベリアおよび非アベリアゲージ理論と同様に高次元理論にも適用可能であることが示されている。
論文 参考訳(メタデータ) (2022-12-28T18:56:25Z) - Unitary property testing lower bounds by polynomials [0.15229257192293197]
我々は、量子アルゴリズムにブラックボックスのユニタリへのクエリアクセスを与えるユニタリプロパティテストについて研究する。
これらの問題の複雑さを特徴づけるには、新しいアルゴリズム技術と低いバウンド法が必要である。
我々は、$mathsfQMA$と$mathsfQMA(2)$の間のオラクル分離に対するユニタリなプロパティテストベースのアプローチを示す。
論文 参考訳(メタデータ) (2022-10-12T03:01:00Z) - Quantum representation of finite groups [0.0]
有限群の量子表現(QRFG)の概念は、長い間量子コンピューティングの基本的な側面であった。
群論と微分幾何学の両方を用いて、この概念を公式に定義する。
我々の研究は、任意の有限群に対する量子表現の存在を証明し、群の各生成元を量子回路に変換する2つの方法の概要を述べる。
論文 参考訳(メタデータ) (2022-09-29T18:01:03Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Quantum Causal Unravelling [44.356294905844834]
我々は,多部量子プロセスにおける相互作用の因果構造を明らかにするための,最初の効率的な方法を開発した。
我々のアルゴリズムは、量子プロセストモグラフィーの技法で効率的に特徴付けることができるプロセスを特定するのに利用できる。
論文 参考訳(メタデータ) (2021-09-27T16:28:06Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
本稿では、量子誤り訂正符号の品質と、論理ゲートの普遍的な集合を達成する能力とを結びつける、近似したイージン・クニル定理の証明を示す。
我々の導出は、一般的な量子気象プロトコルにおける量子フィッシャー情報に強力な境界を用いる。
論文 参考訳(メタデータ) (2020-04-24T17:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。