論文の概要: Partial Differential Equations is All You Need for Generating Neural
Architectures -- A Theory for Physical Artificial Intelligence Systems
- arxiv url: http://arxiv.org/abs/2103.08313v1
- Date: Wed, 10 Mar 2021 00:05:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-05 01:03:35.275953
- Title: Partial Differential Equations is All You Need for Generating Neural
Architectures -- A Theory for Physical Artificial Intelligence Systems
- Title(参考訳): 部分微分方程式は、ニューラルネットワークの生成に必要なすべてである -- 物理人工知能システムの理論
- Authors: Ping Guo, Kaizhu Huang, and Zenglin Xu
- Abstract要約: 統計物理学では反応拡散方程式、量子力学ではschr"odinger方程式、同軸光学ではhelmholtz方程式を一般化する。
数値解を求めるために,有限差分法を用いてNPDEを判別する。
多層パーセプトロン、畳み込みニューラルネットワーク、繰り返しニューラルネットワークなど、ディープニューラルネットワークアーキテクチャの基本構成要素が生成されます。
- 参考スコア(独自算出の注目度): 29.667065357274385
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we generalize the reaction-diffusion equation in statistical
physics, Schr\"odinger equation in quantum mechanics, Helmholtz equation in
paraxial optics into the neural partial differential equations (NPDE), which
can be considered as the fundamental equations in the field of artificial
intelligence research. We take finite difference method to discretize NPDE for
finding numerical solution, and the basic building blocks of deep neural
network architecture, including multi-layer perceptron, convolutional neural
network and recurrent neural networks, are generated. The learning strategies,
such as Adaptive moment estimation, L-BFGS, pseudoinverse learning algorithms
and partial differential equation constrained optimization, are also presented.
We believe it is of significance that presented clear physical image of
interpretable deep neural networks, which makes it be possible for applying to
analog computing device design, and pave the road to physical artificial
intelligence.
- Abstract(参考訳): 本研究では、統計物理学における反応拡散方程式、量子力学におけるSchr\"odinger方程式、パル軸光学におけるヘルムホルツ方程式を神経偏微分方程式(NPDE)に一般化し、人工知能研究の分野における基本方程式とみなすことができる。
数値解を見つけるためにNPDEを判別するために有限差分法を採用し、多層パーセプトロン、畳み込みニューラルネットワーク、繰り返しニューラルネットワークを含むディープニューラルネットワークアーキテクチャの基本構成ブロックを生成する。
また,適応モーメント推定,L-BFGS,擬似逆学習アルゴリズム,偏微分方程式制約最適化などの学習戦略についても述べる。
我々は、解釈可能なディープニューラルネットワークの物理的なイメージを示すことは重要であると信じており、アナログコンピューティングデバイス設計に適用でき、物理的人工知能への道を開くことができる。
関連論文リスト
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - PMNN:Physical Model-driven Neural Network for solving time-fractional
differential equations [17.66402435033991]
時間差分方程式を解くために, 革新的物理モデル駆動ニューラルネットワーク (PMNN) 法を提案する。
ディープニューラルネットワーク(DNN)と分数微分の近似を効果的に組み合わせる。
論文 参考訳(メタデータ) (2023-10-07T12:43:32Z) - Spectral-Bias and Kernel-Task Alignment in Physically Informed Neural
Networks [4.604003661048267]
物理情報ニューラルネットワーク(PINN)は微分方程式の解法として有望である。
この重要な問題に光を当てる包括的な理論的枠組みを提案する。
我々は、PINN予測を大容量データセット限界で支配する積分微分方程式を導出する。
論文 参考訳(メタデータ) (2023-07-12T18:00:02Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Unsupervised Legendre-Galerkin Neural Network for Stiff Partial
Differential Equations [9.659504024299896]
本稿では,Regendre-Galerkinニューラルネットワークに基づく教師なし機械学習アルゴリズムを提案する。
提案したニューラルネットワークは、境界層挙動を有する特異摂動PDEと同様に、一般的な1Dおよび2DPDEに適用される。
論文 参考訳(メタデータ) (2022-07-21T00:47:47Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - A deep learning theory for neural networks grounded in physics [2.132096006921048]
ニューロモルフィックアーキテクチャ上で大規模で高速で効率的なニューラルネットワークを構築するには、それらを実装および訓練するためのアルゴリズムを再考する必要がある。
私たちのフレームワークは、非常に幅広いモデル、すなわち状態やダイナミクスが変動方程式によって記述されるシステムに適用されます。
論文 参考訳(メタデータ) (2021-03-18T02:12:48Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。