論文の概要: Theoretical bounds on data requirements for the ray-based classification
- arxiv url: http://arxiv.org/abs/2103.09577v1
- Date: Wed, 17 Mar 2021 11:38:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-18 13:11:24.572228
- Title: Theoretical bounds on data requirements for the ray-based classification
- Title(参考訳): 線量分類におけるデータ要求に関する理論的境界
- Authors: Brian J. Weber, Sandesh S. Kalantre, Thomas McJunkin, Jacob M. Taylor,
Justyna P. Zwolak
- Abstract要約: 特定の幾何学を識別するために、線と呼ばれる一次元表現の集合と形状の境界の交差が使用される新しい分類フレームワークが提案されている。
ここでは, 任意の凸形状に対して, 主角計量で定義される形状分類に必要な線数の境界を定式化する。
この結果は、体積法や表面法よりもかなり少ないデータ要素を用いて、高次元形状を推定するための異なるアプローチを可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of classifying high-dimensional shapes in real-world data grows
in complexity as the dimension of the space increases. For the case of
identifying convex shapes of different geometries, a new classification
framework has recently been proposed in which the intersections of a set of
one-dimensional representations, called rays, with the boundaries of the shape
are used to identify the specific geometry. This ray-based classification (RBC)
has been empirically verified using a synthetic dataset of two- and
three-dimensional shapes [1] and, more recently, has also been validated
experimentally [2]. Here, we establish a bound on the number of rays necessary
for shape classification, defined by key angular metrics, for arbitrary convex
shapes. For two dimensions, we derive a lower bound on the number of rays in
terms of the shape's length, diameter, and exterior angles. For convex
polytopes in R^N, we generalize this result to a similar bound given as a
function of the dihedral angle and the geometrical parameters of polygonal
faces. This result enables a different approach for estimating high-dimensional
shapes using substantially fewer data elements than volumetric or surface-based
approaches.
- Abstract(参考訳): 実世界のデータの高次元形状を分類する問題は、空間の次元が大きくなるにつれて複雑化する。
異なるジオメトリの凸形状を識別する場合には、線と呼ばれる一次元の表現の集合の交点と、その形状の境界を使って特定の幾何学を識別する新たな分類枠組みが近年提案されている。
この光線に基づく分類(RBC)は、2次元および3次元形状の合成データセット [1] を用いて実験的に検証され、さらに近年では実験的に [2] も検証されている。
ここでは, 任意の凸形状に対して, 主角計量で定義される形状分類に必要な線数の境界を定式化する。
2次元の場合、形状の長さ、直径、外角の観点で、線数に対する下界を導出する。
R^N の凸多面体に対して、この結果は二面角関数や多角形面の幾何学的パラメータとして与えられる同様の境界に一般化する。
この結果は、体積法や表面法よりもかなり少ないデータ要素を用いて、高次元形状を推定するための異なるアプローチを可能にする。
関連論文リスト
- Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - Neural varifolds: an aggregate representation for quantifying the geometry of point clouds [2.2474167740753557]
本稿では,新しい表面形状特徴化,すなわち点雲のニューラルバリアフォールド表現を提案する。
変数表現は、多様体に基づく判別を通じて点雲の表面幾何学を定量化する。
提案したニューラルバリアフォールドは, 形状マッチング, 少数ショット形状分類, 形状再構成の3つの異なるタスクで評価される。
論文 参考訳(メタデータ) (2024-07-05T20:08:16Z) - Spectral Meets Spatial: Harmonising 3D Shape Matching and Interpolation [50.376243444909136]
本稿では,3次元形状の対応と形状の両面を統一的に予測する枠組みを提案する。
我々は、スペクトル領域と空間領域の両方の形状を地図化するために、奥行き関数写像フレームワークと古典的な曲面変形モデルを組み合わせる。
論文 参考訳(メタデータ) (2024-02-29T07:26:23Z) - Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
本稿では,幾何学的文脈を取り入れつつ,画像から深度や表面正規度などの測地を学習するための新しい手法を提案する。
提案手法は,入力画像に存在する幾何学的変動を符号化した幾何学的文脈を抽出し,幾何的制約と深度推定を相関付ける。
本手法は,画像から高品質な3次元形状を生成可能な密着型フレームワーク内での深度と表面の正規分布推定を統一する。
論文 参考訳(メタデータ) (2024-02-08T17:57:59Z) - Geometrically Consistent Partial Shape Matching [50.29468769172704]
3次元形状の対応を見つけることは、コンピュータビジョンとグラフィックスにおいて重要な問題である。
しばしば無視されるが、整合幾何学の重要な性質は整合性である。
本稿では,新しい整数型線形計画部分形状整合式を提案する。
論文 参考訳(メタデータ) (2023-09-10T12:21:42Z) - Differential geometry with extreme eigenvalues in the positive
semidefinite cone [1.9116784879310025]
本稿では,超一般化固有値の効率に基づくSPD値データの解析と処理のためのスケーラブルな幾何学的枠組みを提案する。
我々は、この幾何学に基づいて、SPD行列の新たな反復平均を定義し、与えられた有限個の点の集合に対するその存在と特異性を証明する。
論文 参考訳(メタデータ) (2023-04-14T18:37:49Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
非定常データストリームのデータ幾何を探索することにより,新しい視点から連続学習を研究する。
提案手法は,新しいデータによって引き起こされる幾何構造に対応するために,基底空間の幾何学を動的に拡張する。
実験により,本手法はユークリッド空間で設計したベースライン法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-04-08T06:35:25Z) - Parametrizing Product Shape Manifolds by Composite Networks [5.772786223242281]
形状空間に対する効率的なニューラルネットワーク近似を特別な積構造で学習することは可能であることを示す。
提案アーキテクチャは,低次元因子の近似とその後の組み合わせを別々に学習することで,この構造を利用する。
論文 参考訳(メタデータ) (2023-02-28T15:31:23Z) - Curved Geometric Networks for Visual Anomaly Recognition [39.91252195360767]
データ分布の根底にある性質を理解するために潜伏埋め込みを学ぶことは、曲率ゼロのユークリッド空間でしばしば定式化される。
本研究では,データ中の異常やアウト・オブ・ディストリビューション・オブジェクトを解析するための曲線空間の利点について検討する。
論文 参考訳(メタデータ) (2022-08-02T01:15:39Z) - Neural Convolutional Surfaces [59.172308741945336]
この研究は、大域的、粗い構造から、微細で局所的で、おそらく繰り返される幾何学を歪める形状の表現に関係している。
このアプローチは, 最先端技術よりも優れたニューラル形状圧縮を実現するとともに, 形状詳細の操作と伝達を可能にする。
論文 参考訳(メタデータ) (2022-04-05T15:40:11Z) - Manifold learning with arbitrary norms [8.433233101044197]
本研究では,アースモーバー距離に基づく多様体学習が,分子形状空間を学習する標準的なユークリッド変種よりも優れていることを示す。
数値シミュレーションにより,アースモーバー距離に基づく多様体学習は,分子形状空間を学習するための標準ユークリッド変種よりも優れていることを示した。
論文 参考訳(メタデータ) (2020-12-28T10:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。