論文の概要: Applying physics-based loss functions to neural networks for improved
generalizability in mechanics problems
- arxiv url: http://arxiv.org/abs/2105.00075v1
- Date: Fri, 30 Apr 2021 20:31:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-04 13:34:36.112989
- Title: Applying physics-based loss functions to neural networks for improved
generalizability in mechanics problems
- Title(参考訳): 力学問題における一般化性向上のための物理学に基づく損失関数のニューラルネットワークへの応用
- Authors: Samuel J. Raymond and David B. Camarillo
- Abstract要約: Informed Machine Learning(PIML)は、過去5年間で、科学者や研究者が機械学習の進歩によって得られる利点を活用するために勢いを増しています。
本研究では,物理に基づく損失関数の利用に対処する,PIMLを利用するための新しいアプローチについて論じる。
- 参考スコア(独自算出の注目度): 3.655021726150368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-Informed Machine Learning (PIML) has gained momentum in the last 5
years with scientists and researchers aiming to utilize the benefits afforded
by advances in machine learning, particularly in deep learning. With large
scientific data sets with rich spatio-temporal data and high-performance
computing providing large amounts of data to be inferred and interpreted, the
task of PIML is to ensure that these predictions, categorizations, and
inferences are enforced by, and conform to the limits imposed by physical laws.
In this work a new approach to utilizing PIML is discussed that deals with the
use of physics-based loss functions. While typical usage of physical equations
in the loss function requires complex layers of derivatives and other functions
to ensure that the known governing equation is satisfied, here we show that a
similar level of enforcement can be found by implementing more simpler loss
functions on specific kinds of output data. The generalizability that this
approach affords is shown using examples of simple mechanical models that can
be thought of as sufficiently simplified surrogate models for a wide class of
problems.
- Abstract(参考訳): 物理インフォームド・機械学習(PIML)は過去5年間で勢いを増し、科学者や研究者は機械学習、特にディープラーニングの進歩によって得られる利益を活用することを目指している。
豊かな時空間データと大量のデータを推論・解釈するための高性能コンピューティングを備えた大規模科学データセットにより、PIMLの課題は、これらの予測、分類、推論が物理法則によって強制され、課せられる制限に従うことを保証することである。
本稿では,物理学に基づく損失関数の利用を扱うPIMLの新たな利用法について論じる。
損失関数における物理方程式の典型的利用は、既知の支配方程式が満たされることを保証するために、微分やその他の関数の複雑な層を必要とするが、ここでは、特定の種類の出力データに対してより単純な損失関数を実装することによって、同様のレベルの強制を見出している。
このアプローチが持つ一般化性は、幅広い問題に対して十分に単純化された代理モデルと考えることができる単純な機械モデルの例を用いて示される。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Physics-Informed Weakly Supervised Learning for Interatomic Potentials [17.165117198519248]
我々は、機械学習型原子間ポテンシャルのトレーニングのための物理インフォームド、弱教師付きアプローチを導入する。
我々は、様々なベースラインモデルとベンチマークデータセットに対して、エネルギーと力の誤差を(しばしば2倍以下に)減らすことを示した。
論文 参考訳(メタデータ) (2024-07-23T12:49:04Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Neural oscillators for generalization of physics-informed machine
learning [1.893909284526711]
物理インフォームド機械学習(PIML)の最大の課題は、トレーニング領域を超えた一般化である。
本稿では,PIMLの一般化能力の向上をめざし,実用的で現実的な応用を促進することを目的とする。
我々は、PDEソリューションの因果性と時間的逐次特性を利用して、反復的なニューラルアーキテクチャを持つPIMLモデルを融合する。
論文 参考訳(メタデータ) (2023-08-17T13:50:03Z) - On the Integration of Physics-Based Machine Learning with Hierarchical
Bayesian Modeling Techniques [0.0]
本稿では,ガウス過程(GP)モデルの平均関数にメカニクスに基づくモデルを組み込み,カーネルマシンによる潜在的な不一致を特徴付けることを提案する。
カーネル関数の定常性は、階層的ベイズ手法によって解決された長いデータセットの逐次処理において難しいハードルである。
数値および実験例を用いて, 構造力学逆問題に対する提案手法の可能性を示した。
論文 参考訳(メタデータ) (2023-03-01T02:29:41Z) - Neural Operator: Is data all you need to model the world? An insight
into the impact of Physics Informed Machine Learning [13.050410285352605]
我々は、データ駆動アプローチが、工学や物理学の問題を解決する従来の手法を補完する方法についての洞察を提供する。
我々は,PDE演算子学習の解演算子を学習するための,新しい,高速な機械学習に基づくアプローチを強調した。
論文 参考訳(メタデータ) (2023-01-30T23:29:33Z) - A survey and taxonomy of loss functions in machine learning [51.35995529962554]
本稿では, 回帰, 分類, 生成モデル, ランキング, エネルギーベースモデリングなど, 主要なアプリケーションにまたがる最も広く使われている損失関数について概観する。
直感的な分類法で構築された43個の個別の損失関数を導入し,それらの理論的基礎,特性,最適な適用状況を明らかにした。
論文 参考訳(メタデータ) (2023-01-13T14:38:24Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Physics-Guided Problem Decomposition for Scaling Deep Learning of
High-dimensional Eigen-Solvers: The Case of Schr\"{o}dinger's Equation [8.80823317679047]
ディープニューラルネットワーク(NN)は、高次元固有値方程式を解くための従来のシミュレーション駆動アプローチの代替として提案されている。
本稿では,高次元固有ベクトルを単純なサブタスクに分解する複雑な回帰タスクを物理知識を用いて分解する。
量子力学におけるSchr"odinger's Equationに対する物理誘導問題分解の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-12T05:59:08Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。