論文の概要: Approximate Fr\'echet Mean for Data Sets of Sparse Graphs
- arxiv url: http://arxiv.org/abs/2105.04062v1
- Date: Mon, 10 May 2021 01:13:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 02:24:55.477060
- Title: Approximate Fr\'echet Mean for Data Sets of Sparse Graphs
- Title(参考訳): スパースグラフのデータセットに対する近似fr\'echet平均
- Authors: Daniel Ferguson and Fran\c{c}ois G. Meyer
- Abstract要約: 本研究では、各隣接値の固有値間の$ell$ノルムによって定義された擬似メトリック行列をグラフの集合に装備する。
編集距離とは異なり、この擬メトリックは複数のスケールでの構造変化を示し、グラフの集合上の様々な統計問題の研究によく適合している。
本研究では,一定の大きさの非有向非重み付きグラフの集合fr'echet平均の近似を計算するアルゴリズムについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To characterize the location (mean, median) of a set of graphs, one needs a
notion of centrality that is adapted to metric spaces, since graph sets are not
Euclidean spaces. A standard approach is to consider the Fr\'echet mean. In
this work, we equip a set of graph with the pseudometric defined by the
$\ell_2$ norm between the eigenvalues of their respective adjacency matrix .
Unlike the edit distance, this pseudometric reveals structural changes at
multiple scales, and is well adapted to studying various statistical problems
on sets of graphs. We describe an algorithm to compute an approximation to the
Fr\'echet mean of a set of undirected unweighted graphs with a fixed size.
- Abstract(参考訳): グラフの集合の位置(平均、中央値)を特徴づけるためには、グラフ集合はユークリッド空間ではないので、計量空間に適合する中心性の概念が必要である。
標準的なアプローチはfr\'echet平均を考えることである。
本研究では、各隣接行列の固有値の間に、$\ell_2$ norm で定義される擬メトリックとグラフの集合を同値化する。
編集距離とは異なり、この擬メトリックは複数のスケールでの構造変化を示し、グラフの集合上の様々な統計問題の研究によく適合している。
一定の大きさの非有向非重み付きグラフの集合のfr\'echet平均の近似を計算するアルゴリズムについて述べる。
関連論文リスト
- Graph GOSPA metric: a metric to measure the discrepancy between graphs of different sizes [3.8823562292981393]
本稿では,ノード数が異なる可能性のあるグラフ間の相似性を測定する指標を提案する。
提案したグラフGOSPAメトリクスは、適切に割り当てられたノード、ミスノード、偽ノード、グラフ間のエッジミスマッチに対するノード属性エラーに関連するコストを含む。
論文 参考訳(メタデータ) (2023-11-10T11:40:24Z) - Graph Fourier MMD for Signals on Graphs [67.68356461123219]
本稿では,グラフ上の分布と信号の間の新しい距離を提案する。
GFMMDは、グラフ上で滑らかであり、期待差を最大化する最適な目撃関数によって定義される。
グラフベンチマークのデータセットと単一セルRNAシークエンシングデータ解析について紹介する。
論文 参考訳(メタデータ) (2023-06-05T00:01:17Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - Embedding Graphs on Grassmann Manifold [31.42901131602713]
本稿では,グラスマン多様体に近似した2階グラフ特性を組み込んだ新しいグラフ表現学習手法EGGを提案する。
EGGの有効性はノードレベルとグラフレベルでのクラスタリングと分類タスクの両方を用いて示される。
論文 参考訳(メタデータ) (2022-05-30T12:56:24Z) - Graph Spectral Embedding using the Geodesic Betweeness Centrality [76.27138343125985]
本稿では、局所的な類似性、接続性、グローバル構造を教師なしで表現するグラフSylvester Embedding (GSE)を紹介する。
GSEはシルヴェスター方程式の解を用いて、ネットワーク構造と近傍の近接を1つの表現で捉える。
論文 参考訳(メタデータ) (2022-05-07T04:11:23Z) - Theoretical analysis and computation of the sample Frechet mean for sets
of large graphs based on spectral information [0.0]
グラフの集合に、それぞれの隣接行列の固有値の間のノルムで定義される擬測度を割り当てる。
編集距離とは異なり、この擬似測度は複数のスケールで構造変化を示す。
固定サイズの無向非重み付きグラフの集合のサンプルFrechet平均に対する近似を計算するアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-01-15T20:53:29Z) - Some Algorithms on Exact, Approximate and Error-Tolerant Graph Matching [3.655021726150369]
我々は、様々な正確かつ不正確なグラフマッチング技術の広範な調査を紹介します。
グラフマッチングアルゴリズムのカテゴリが提示され、重要でないノードを除去することでグラフのサイズを小さくする。
幾何グラフを用いたグラフ類似度測定の新しい手法を提案する。
論文 参考訳(メタデータ) (2020-12-30T18:51:06Z) - Articulated Shape Matching Using Laplacian Eigenfunctions and
Unsupervised Point Registration [38.16866987817019]
スペクトルグラフ理論は、これらのグラフを低次元空間にマッピングし、それらの埋め込みを整列させることで形状と一致させることができる。
我々は、ラプラシア行列の固有関数の最適部分集合を選択することによって、2つの同値な$K$-次元の点集合の最良の整合を求める新しい定式化を導出する。
論文 参考訳(メタデータ) (2020-12-14T08:49:25Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Wasserstein-based Graph Alignment [56.84964475441094]
我々は,より小さいグラフのノードと大きなグラフのノードをマッチングすることを目的とした,1対多のグラフアライメント問題に対する新しい定式化を行った。
提案手法は,各タスクに対する最先端のアルゴリズムに対して,大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-03-12T22:31:59Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
半パラメトリック指数族分布におけるパラメータの統計的推定問題として、両部グラフを考察し、その表現学習問題を定式化する。
提案手法は, 地中真理付近で強い凸性を示すため, 勾配降下法が線形収束率を達成できることを示す。
我々の推定器は指数族内の任意のモデル誤特定に対して頑健であり、広範な実験で検証されている。
論文 参考訳(メタデータ) (2020-03-02T16:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。