論文の概要: Theoretical analysis and computation of the sample Frechet mean for sets
of large graphs based on spectral information
- arxiv url: http://arxiv.org/abs/2201.05923v1
- Date: Sat, 15 Jan 2022 20:53:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-22 09:48:38.522246
- Title: Theoretical analysis and computation of the sample Frechet mean for sets
of large graphs based on spectral information
- Title(参考訳): スペクトル情報に基づく大規模グラフ集合のサンプルフレシェ平均の理論的解析と計算
- Authors: Daniel Ferguson and Francois G. Meyer
- Abstract要約: グラフの集合に、それぞれの隣接行列の固有値の間のノルムで定義される擬測度を割り当てる。
編集距離とは異なり、この擬似測度は複数のスケールで構造変化を示す。
固定サイズの無向非重み付きグラフの集合のサンプルFrechet平均に対する近似を計算するアルゴリズムについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To characterize the location (mean, median) of a set of graphs, one needs a
notion of centrality that is adapted to metric spaces, since graph sets are not
Euclidean spaces. A standard approach is to consider the Frechet mean. In this
work, we equip a set of graphs with the pseudometric defined by the norm
between the eigenvalues of their respective adjacency matrix. Unlike the edit
distance, this pseudometric reveals structural changes at multiple scales, and
is well adapted to studying various statistical problems for graph-valued data.
We describe an algorithm to compute an approximation to the sample Frechet mean
of a set of undirected unweighted graphs with a fixed size using this
pseudometric.
- Abstract(参考訳): グラフの集合の位置(平均、中央値)を特徴づけるためには、グラフ集合はユークリッド空間ではないので、計量空間に適合する中心性の概念が必要である。
標準的なアプローチは、フレシェ平均を考えることである。
本研究では,各隣接行列の固有値間のノルムによって定義される擬メトリックとグラフの集合を同値化する。
編集距離とは異なり、この擬似測度は複数スケールの構造変化を明らかにし、グラフ値データに対する様々な統計問題の研究に適している。
本稿では,この擬似メトリックを用いて,非方向の未重み付きグラフの集合のサンプルFrechet平均に対する近似を計算するアルゴリズムについて述べる。
関連論文リスト
- Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Graph Fourier MMD for Signals on Graphs [67.68356461123219]
本稿では,グラフ上の分布と信号の間の新しい距離を提案する。
GFMMDは、グラフ上で滑らかであり、期待差を最大化する最適な目撃関数によって定義される。
グラフベンチマークのデータセットと単一セルRNAシークエンシングデータ解析について紹介する。
論文 参考訳(メタデータ) (2023-06-05T00:01:17Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - Geometric Scattering on Measure Spaces [12.0756034112778]
測度空間上での幾何散乱の一般統一モデルを導入する。
未知多様体をランダムにサンプリングして得られる有限測度空間を考える。
本稿では, 関連するグラフ散乱変換が基礎多様体上の散乱変換を近似するデータ駆動グラフを構築するための2つの方法を提案する。
論文 参考訳(メタデータ) (2022-08-17T22:40:09Z) - Probability density estimation for sets of large graphs with respect to
spectral information using stochastic block models [0.0]
本研究では、各隣接行列の固有値の間に$ell$ノルムで定義される擬メトリックのグラフの集合を割り当てる。
この擬似計量とグラフ値データセットの各サンプルモーメントを用いて分布のパラメータを$hatmu$とし、この分布を$mu$の近似として解釈する。
論文 参考訳(メタデータ) (2022-07-05T16:53:22Z) - 3D Shape Registration Using Spectral Graph Embedding and Probabilistic
Matching [24.41451985857662]
本稿では,3次元形状登録の問題に対処し,スペクトルグラフ理論と確率的マッチングに基づく新しい手法を提案する。
この章の主な貢献は、スペクトルグラフマッチング法をラプラシアン埋め込みと組み合わせることで、非常に大きなグラフに拡張することである。
論文 参考訳(メタデータ) (2021-06-21T15:02:31Z) - Approximate Fr\'echet Mean for Data Sets of Sparse Graphs [0.0]
本研究では、各隣接値の固有値間の$ell$ノルムによって定義された擬似メトリック行列をグラフの集合に装備する。
編集距離とは異なり、この擬メトリックは複数のスケールでの構造変化を示し、グラフの集合上の様々な統計問題の研究によく適合している。
本研究では,一定の大きさの非有向非重み付きグラフの集合fr'echet平均の近似を計算するアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-05-10T01:13:25Z) - Posterior Consistency of Semi-Supervised Regression on Graphs [14.65047105712853]
グラフベースの半教師付き回帰(SSR)は、頂点の小さな部分集合上の値(ラベル)から重み付きグラフ上の関数の値を推定する問題である。
本稿では,ラベルの雑音が小さく,基礎となるグラフ重み付けがよくクラスタ化されたノードと整合している環境で,分類の文脈におけるSSRの整合性について考察する。
重み付きグラフはグラフラプラシアンを用いてガウス先行を定義するSSRのベイズ式を示し、ラベル付きデータは可能性を定義する。
論文 参考訳(メタデータ) (2020-07-25T00:00:19Z) - Offline detection of change-points in the mean for stationary graph
signals [55.98760097296213]
グラフ信号定常性の概念に依存するオフライン手法を提案する。
我々の検出器は、漸近的でない不等式オラクルの証拠を伴っている。
論文 参考訳(メタデータ) (2020-06-18T15:51:38Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
半パラメトリック指数族分布におけるパラメータの統計的推定問題として、両部グラフを考察し、その表現学習問題を定式化する。
提案手法は, 地中真理付近で強い凸性を示すため, 勾配降下法が線形収束率を達成できることを示す。
我々の推定器は指数族内の任意のモデル誤特定に対して頑健であり、広範な実験で検証されている。
論文 参考訳(メタデータ) (2020-03-02T16:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。