論文の概要: Pulling back information geometry
- arxiv url: http://arxiv.org/abs/2106.05367v1
- Date: Wed, 9 Jun 2021 20:16:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 14:35:17.726398
- Title: Pulling back information geometry
- Title(参考訳): 情報幾何学を取り戻す
- Authors: Georgios Arvanitidis, Miguel Gonz\'alez-Duque, Alison Pouplin,
Dimitris Kalatzis, S{\o}ren Hauberg
- Abstract要約: 我々は,幅広いデコーダ分布に対して有意義な潜在測地を実現できることを示す。
我々は,幅広いデコーダ分布に対して有意義な潜在測地を実現できることを示す。
- 参考スコア(独自算出の注目度): 3.0273878903284266
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Latent space geometry has shown itself to provide a rich and rigorous
framework for interacting with the latent variables of deep generative models.
The existing theory, however, relies on the decoder being a Gaussian
distribution as its simple reparametrization allows us to interpret the
generating process as a random projection of a deterministic manifold.
Consequently, this approach breaks down when applied to decoders that are not
as easily reparametrized. We here propose to use the Fisher-Rao metric
associated with the space of decoder distributions as a reference metric, which
we pull back to the latent space. We show that we can achieve meaningful latent
geometries for a wide range of decoder distributions for which the previous
theory was not applicable, opening the door to `black box' latent geometries.
- Abstract(参考訳): 潜時空間幾何学は、深部生成モデルの潜時変数と相互作用するリッチで厳密な枠組みを提供することを示した。
しかし、既存の理論は、その単純な再パラメータ化により生成過程を決定論的多様体のランダム射影として解釈できるため、ガウス分布であるデコーダに依存する。
したがって、再パラメータ化が容易でないデコーダに適用すると、このアプローチは崩壊する。
本稿では,ディコーダ分布の空間に関連するfisher-raoメトリックを基準メトリックとして使用し,それを潜在空間に戻すことを提案する。
先行理論が適用できない広い範囲のデコーダ分布に対して有意義な潜在ジオメトリを実現できることを示し、「ブラックボックス」潜在ジオメトリへの扉を開く。
関連論文リスト
- Decoder ensembling for learned latent geometries [15.484595752241122]
我々は、関連する予想多様体上の測地線を容易に計算する方法を示す。
このシンプルで信頼性が高く、簡単に使える潜在測地に一歩近づきます。
論文 参考訳(メタデータ) (2024-08-14T12:35:41Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
Fisher-Rao情報幾何学は、ツールを微分幾何学から活用することができる。
楕円分布の枠組みにおけるこれらの幾何学的ツールの実用的利用について述べる。
論文 参考訳(メタデータ) (2023-10-02T09:23:32Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - Geometric Scattering on Measure Spaces [12.0756034112778]
測度空間上での幾何散乱の一般統一モデルを導入する。
未知多様体をランダムにサンプリングして得られる有限測度空間を考える。
本稿では, 関連するグラフ散乱変換が基礎多様体上の散乱変換を近似するデータ駆動グラフを構築するための2つの方法を提案する。
論文 参考訳(メタデータ) (2022-08-17T22:40:09Z) - Unveiling the Latent Space Geometry of Push-Forward Generative Models [24.025975236316846]
多くの深い生成モデルは、GAN(Generative Adversarial Networks)やVAE(Varial Auto-Encoders)のような連続生成器によってガウス測度のプッシュフォワードとして定義される。
この研究は、そのような深層生成モデルの潜伏空間を探索する。
これらのモデルの主な問題は、非連結分布を学習する際に、対象分布の支持外からサンプルを出力する傾向があることである。
論文 参考訳(メタデータ) (2022-07-21T15:29:35Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
ユークリッド空間における測度保存拡散の完全なレシピは、最近、いくつかのMCMCアルゴリズムを単一のフレームワークに統合した。
我々は、この構成を任意の多様体に改善し一般化する幾何学理論を開発する。
論文 参考訳(メタデータ) (2021-05-06T17:36:55Z) - Generative Model without Prior Distribution Matching [26.91643368299913]
変分オートエンコーダ(VAE)とその変分は、いくつかの先行分布を満たすために低次元の潜在表現を学習することによって古典的な生成モデルである。
我々は、先行変数に適合させるのではなく、先行変数が埋め込み分布と一致するように提案する。
論文 参考訳(メタデータ) (2020-09-23T09:33:24Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
散乱変換は、畳み込みニューラルネットワークのモデルとして機能する多層ウェーブレットベースのディープラーニングアーキテクチャである。
非対称ウェーブレットの非常に一般的なクラスに基づくグラフに対して、窓付きおよび非窓付き幾何散乱変換を導入する。
これらの非対称グラフ散乱変換は、対称グラフ散乱変換と多くの理論的保証を持つことを示す。
論文 参考訳(メタデータ) (2019-11-14T17:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。