論文の概要: Continuous-variable neural-network quantum states and the quantum rotor
model
- arxiv url: http://arxiv.org/abs/2107.07105v1
- Date: Thu, 15 Jul 2021 03:53:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 13:47:36.466471
- Title: Continuous-variable neural-network quantum states and the quantum rotor
model
- Title(参考訳): 連続変数ニューラルネットワーク量子状態と量子ロータモデル
- Authors: James Stokes, Saibal De, Shravan Veerapaneni, Giuseppe Carleo
- Abstract要約: 第1量子化における連続可変格子量子系の解析のためのニューラルネットワーク量子状態アルゴリズムについて検討する。
ボルツマン機械(RBM)波動関数を自然に一般化する連続可変トライアルウェーブフランプトンの族が導入された。
その結果, 偏微分方程式 (PDE) に基づくスケーラブル固有解法と比較した。
- 参考スコア(独自算出の注目度): 2.3398944692275476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We initiate the study of neural-network quantum state algorithms for
analyzing continuous-variable lattice quantum systems in first quantization. A
simple family of continuous-variable trial wavefunctons is introduced which
naturally generalizes the restricted Boltzmann machine (RBM) wavefunction
introduced for analyzing quantum spin systems. By virtue of its simplicity, the
same variational Monte Carlo training algorithms that have been developed for
ground state determination and time evolution of spin systems have natural
analogues in the continuum. We offer a proof of principle demonstration in the
context of ground state determination of a stoquastic quantum rotor
Hamiltonian. Results are compared against those obtained from partial
differential equation (PDE) based scalable eigensolvers. This study serves as a
benchmark against which future investigation of continuous-variable neural
quantum states can be compared, and points to the need to consider deep network
architectures and more sophisticated training algorithms.
- Abstract(参考訳): 第一量子化における連続変数格子量子システムの解析のためのニューラルネットワーク量子状態アルゴリズムの研究を開始する。
量子スピン系の解析に導入された制限ボルツマン機械(rbm)の波動関数を自然に一般化する連続変数試行波ファンクトンの単純な族が導入された。
その単純さにより、スピン系の基底状態決定と時間進化のために開発されたモンテカルロ訓練アルゴリズムは連続体に自然な類似性を持つ。
確率的量子回転子ハミルトンの基底状態決定の文脈において、原理実証の証明を提供する。
その結果, 偏微分方程式 (PDE) に基づくスケーラブル固有解法と比較した。
この研究は、連続変数型ニューラルネットワークの量子状態の将来の調査を比較できるベンチマークとして役立ち、ディープネットワークアーキテクチャとより高度なトレーニングアルゴリズムを考慮する必要性を指摘する。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Demonstration of a variational quantum eigensolver with a solid-state spin system under ambient conditions [15.044543674753308]
量子シミュレータは、物理系の量子的性質を利用して別の物理系を研究する能力を提供する。
変分量子固有解法アルゴリズムは分子電子構造の研究に特に有望な応用である。
スピンベースの固体量子ビットは、長いデコヒーレンス時間と高忠実度量子ゲートの利点がある。
論文 参考訳(メタデータ) (2024-07-23T09:17:06Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
臨界近傍の量子系の低エネルギー力学が有限絡みによってどのように変化するかを研究する。
その結果、時間依存的臨界現象における絡み合いによる正確な役割が確立された。
論文 参考訳(メタデータ) (2023-01-23T19:23:54Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
ハミルトン系の基底状態を作成するために,改良された反復量子アルゴリズムを提案する。
提案手法には,各イテレーションにおける成功確率の向上,測定精度に依存しないサンプリングの複雑さ,ゲートの複雑さの低減,およびアシラリー状態が十分に準備された場合の量子資源のみを必要とするという利点がある。
論文 参考訳(メタデータ) (2022-10-16T05:57:43Z) - Quantum Sampling Algorithms, Phase Transitions, and Computational
Complexity [0.0]
確率分布から独立したサンプルを描画することはモンテカルロアルゴリズム、機械学習、統計物理学における重要な計算問題である。
この問題は原則として、確率分布全体を符号化した量子状態を作成し、続いて射影測定を行うことで、量子コンピュータ上で解決することができる。
本研究では,イジング連鎖,異なるグラフ上のハードスフィアモデル,非構造探索問題を符号化したモデルなど,様々なモデルのギブス分布に対して,そのような量子状態の漸近的準備の複雑さについて検討する。
論文 参考訳(メタデータ) (2021-09-07T11:43:45Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
一次元定常量子ブラソフ方程式は、エネルギーを力学変数の1つとして分析する。
量子トンネル効果が小さい半古典的な場合、無限級数解が開発される。
論文 参考訳(メタデータ) (2021-02-18T20:55:04Z) - Chaos and Complexity from Quantum Neural Network: A study with Diffusion
Metric in Machine Learning [0.0]
量子ニューラルネットワーク(QNN)の機械学習力学における量子カオス現象と複雑性について検討する。
統計的および微分幾何学的手法を用いてQNNの学習理論を研究する。
論文 参考訳(メタデータ) (2020-11-16T10:41:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。