論文の概要: Differential Equation Based Path Integral for System-Bath Dynamics
- arxiv url: http://arxiv.org/abs/2107.10727v1
- Date: Thu, 22 Jul 2021 15:06:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 05:21:39.934175
- Title: Differential Equation Based Path Integral for System-Bath Dynamics
- Title(参考訳): システムバスダイナミクスのための微分方程式に基づく経路積分
- Authors: Geshuo Wang, Zhenning Cai
- Abstract要約: 本稿では,自由量子系の実時間進化をシミュレートする微分方程式に基づく経路積分(DEBPI)法を提案する。
これらの微分方程式を離散化することで、新しい数値スキームを導出することができる。
適切なシステムを選択し,適切な数値スキームを適用することで,i-QuAPI法に必要なメモリコストを大幅に削減できることを数値的に検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the differential equation based path integral (DEBPI) method to
simulate the real-time evolution of open quantum systems. In this method, a
system of partial differential equations is derived based on the continuation
of a classical numerical method called iterative quasi-adiabatic propagator
path integral (i-QuAPI). While the resulting system has infinite equations, we
introduce a reasonable closure to obtain a series of finite systems. New
numerical schemes can be derived by discretizing these differential equations.
It is numerically verified that in certain cases, by selecting appropriate
systems and applying suitable numerical schemes, the memory cost required in
the i-QuAPI method can be significantly reduced.
- Abstract(参考訳): 本稿では,開量子系の実時間発展をシミュレートする微分方程式に基づく経路積分(debpi)法を提案する。
この方法では、古典的数値法であるイテレーティブ準断熱伝搬路積分(i-QuAPI)の継続に基づいて偏微分方程式の系を導出する。
結果の系は無限方程式を持つが、一連の有限系を得るには妥当な閉包を導入する。
これらの微分方程式を離散化することで、新しい数値スキームを導出することができる。
適切なシステムを選択し、適切な数値スキームを適用することで、i-QuAPI法に必要なメモリコストを大幅に削減できるという数値的な検証がなされている。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - A hybrid quantum solver for the Lorenz system [0.2770822269241974]
我々は,ロレンツ系を解くための古典量子ハイブリッド法を開発した。
フォワードオイラー法を用いて系を時間的に離散化し、方程式系に変換する。
本稿では,ハイブリッド法と古典的アプローチを比較し,ロレンツ系を解く数値計算結果について述べる。
論文 参考訳(メタデータ) (2024-10-20T15:20:28Z) - Solving Fractional Differential Equations on a Quantum Computer: A Variational Approach [0.1492582382799606]
本稿では, 時間-屈折偏微分方程式の解法として, 効率的な変分型量子古典アルゴリズムを提案する。
その結果, 解の忠実度は分数指数に不感であり, 勾配評価コストは時間ステップ数とともに経済的にスケールすることがわかった。
論文 参考訳(メタデータ) (2024-06-13T02:27:16Z) - Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems [2.707154152696381]
本稿では、Fokker-Planck方程式(FPE)を用いて非線形微分方程式(SDE)を解くための効率的な量子アルゴリズムを提案する。
空間と時間におけるFPEを2つのよく知られた数値スキーム、すなわち Chang-Cooper と暗黙の有限差分を用いて識別する。
次に、量子線型系を用いて線形方程式の結果の解を計算する。
論文 参考訳(メタデータ) (2023-03-04T17:40:23Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
ボゾン系が環境との相互作用を含むように一般化されたとき、有限$n$で正確な対応も可能であることを示す。
離散非線形シュル「オーディンガー方程式」の形をした特定の系をより詳細に分析する。
論文 参考訳(メタデータ) (2023-02-03T19:17:37Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Automated differential equation solver based on the parametric
approximation optimization [77.34726150561087]
本稿では,最適化アルゴリズムを用いてパラメータ化近似を用いた解を求める手法を提案する。
アルゴリズムのパラメータを変更することなく、幅広い種類の方程式を自動で解くことができる。
論文 参考訳(メタデータ) (2022-05-11T10:06:47Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Continuous Convolutional Neural Networks: Coupled Neural PDE and ODE [1.1897857181479061]
本研究では、物理システムの隠れた力学を学習できる畳み込みニューラルネットワーク(CNN)の変種を提案する。
画像や時系列などの物理系を複数の層からなるシステムとして考えるのではなく、微分方程式(DE)の形でシステムをモデル化することができる。
論文 参考訳(メタデータ) (2021-10-30T21:45:00Z) - Multi-objective discovery of PDE systems using evolutionary approach [77.34726150561087]
本稿では,多目的共進化アルゴリズムについて述べる。
システム内の単一の方程式とシステム自体が同時に進化し、システムを得る。
単一のベクトル方程式とは対照的に、コンポーネント・ワイド・システムは専門家の解釈により適しており、従って応用にも適している。
論文 参考訳(メタデータ) (2021-03-11T15:37:52Z) - Solving non-linear Kolmogorov equations in large dimensions by using
deep learning: a numerical comparison of discretization schemes [16.067228939231047]
非線形偏微分コルモゴロフ方程式は、幅広い時間依存現象を記述するのに有効である。
深層学習は、これらの方程式を高次元で解くために導入された。
本研究では, 観測された計算の複雑性に影響を与えることなく, 精度の向上が可能であることを示す。
論文 参考訳(メタデータ) (2020-12-09T07:17:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。