論文の概要: Tensor completion using geodesics on Segre manifolds
- arxiv url: http://arxiv.org/abs/2108.00735v1
- Date: Mon, 2 Aug 2021 09:08:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-03 14:53:38.863393
- Title: Tensor completion using geodesics on Segre manifolds
- Title(参考訳): segre多様体上の測地線を用いたテンソル完全化
- Authors: Lars Swijsen, Joeri Van der Veken and Nick Vannieuwenhoven
- Abstract要約: 本手法をMovieLensデータセットのレコメンデータシステムにおける映画評価予測に適用する。
また, 蛍光分光法により, 純粋な蛍光フッ化物も検出した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a Riemannian conjugate gradient (CG) optimization method for
finding low rank approximations of incomplete tensors. Our main contribution
consists of an explicit expression of the geodesics on the Segre manifold.
These are exploited in our algorithm to perform the retractions. We apply our
method to movie rating predictions in a recommender system for the MovieLens
dataset, and identification of pure fluorophores via fluorescent spectroscopy
with missing data. In this last application, we recover the tensor
decomposition from less than $10\%$ of the data.
- Abstract(参考訳): 不完全テンソルの低階近似を求めるためのリーマン共役勾配(CG)最適化法を提案する。
我々の主な貢献は、セグレ多様体上の測地線の明示的な表現である。
これらをアルゴリズムで活用してリトラクションを行う。
本手法は,MovieLensデータセットのレコメンデータシステムにおける映画評価予測に応用し,蛍光分光法と欠測データを用いた純粋な蛍光フッ化物の同定を行う。
この最後のアプリケーションでは、テンソル分解を10〜%未満のデータから回収する。
関連論文リスト
- Recovering Manifold Structure Using Ollivier-Ricci Curvature [1.9458156037869137]
我々は、Ollivier-Ricci曲率と推定距離歪みに基づく基準を用いて、隣り合うグラフからスプリアスエッジをプルーする新しいアルゴリズムであるORC-ManLを紹介する。
我々のモチベーションは多様体学習から来ており、最も近い近傍グラフを生成するデータが低次元多様体からのノイズのあるサンプルで構成されている場合、周辺空間をショートカットするエッジは、データ多様体に沿って配置されるエッジよりも負のオリヴィエ・リッチ曲率を持つことを示す。
論文 参考訳(メタデータ) (2024-10-02T01:00:30Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
ガウス過程の回帰は、よく校正された不確実性推定を提供するために広く用いられている。
これは、データが実際に存在する暗黙の低次元多様体のため、高次元データに苦しむ。
本稿では,データ(ラベル付きおよびラベルなし)から直接暗黙構造を完全に微分可能な方法で推定できる手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T09:52:48Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
本稿では, 拡散サンプリング法とクリロフ部分空間法を相乗的に組み合わせた, 新規で効率的な拡散サンプリング手法を提案する。
具体的には、ツイーディの公式による分母化標本における接空間がクリロフ部分空間を成すならば、その分母化データによるCGは、接空間におけるデータの整合性更新を確実に維持する。
提案手法は,従来の最先端手法よりも80倍以上高速な推論時間を実現する。
論文 参考訳(メタデータ) (2023-03-10T07:42:49Z) - Dynamic Flows on Curved Space Generated by Labeled Data [17.621847430986854]
興味のあるデータセットに近い新しいサンプルを生成するための勾配流法を提案する。
本手法は,移動学習環境における分類モデルの精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-01-31T19:53:01Z) - The Manifold Hypothesis for Gradient-Based Explanations [55.01671263121624]
勾配に基づく説明アルゴリズムは知覚的に整合した説明を提供する。
特徴属性がデータの接する空間と一致しているほど、知覚的に一致している傾向にあることを示す。
説明アルゴリズムは、その説明をデータ多様体と整合させるよう積極的に努力すべきである。
論文 参考訳(メタデータ) (2022-06-15T08:49:24Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
ほとんどの既存の多様体学習アルゴリズムは、元のデータを低次元座標で置き換える。
本稿では,これらの問題に対処するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-14T15:50:38Z) - New Riemannian preconditioned algorithms for tensor completion via
polyadic decomposition [10.620193291237262]
これらのアルゴリズムは、ポリアジック分解形態におけるローランクテンソルの因子行列の積空間上の非ユークリッド計量を利用する。
提案された勾配降下アルゴリズムがテンソル完備問題の定常点にグローバルに収束することを証明する。
合成データと実世界のデータの数値計算結果から,提案アルゴリズムは最先端アルゴリズムよりもメモリと時間において効率的であることが示唆された。
論文 参考訳(メタデータ) (2021-01-26T22:11:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。