論文の概要: A Latent Restoring Force Approach to Nonlinear System Identification
- arxiv url: http://arxiv.org/abs/2109.10681v1
- Date: Wed, 22 Sep 2021 12:21:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-23 13:51:28.106287
- Title: A Latent Restoring Force Approach to Nonlinear System Identification
- Title(参考訳): 非線形システム同定における潜時回復力のアプローチ
- Authors: Timothy J. Rogers and Tobias Friis
- Abstract要約: この研究は、システムの未知の非線形項の寄与を抽出し同定するためのベイズフィルタに基づくアプローチを提案する。
この手法は、シミュレートされたケーススタディと実験的なベンチマークデータセットの両方で有効であることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Identification of nonlinear dynamic systems remains a significant challenge
across engineering. This work suggests an approach based on Bayesian filtering
to extract and identify the contribution of an unknown nonlinear term in the
system which can be seen as an alternative viewpoint on restoring force surface
type approaches. To achieve this identification, the contribution which is the
nonlinear restoring force is modelled, initially, as a Gaussian process in
time. That Gaussian process is converted into a state-space model and combined
with the linear dynamic component of the system. Then, by inference of the
filtering and smoothing distributions, the internal states of the system and
the nonlinear restoring force can be extracted. In possession of these states a
nonlinear model can be constructed. The approach is demonstrated to be
effective in both a simulated case study and on an experimental benchmark
dataset.
- Abstract(参考訳): 非線形力学系の同定は工学における重要な課題である。
本研究は, ベイズフィルタを基礎として, 力面型アプローチの代替的視点として見なされる未知の非線形項を抽出・同定する手法を提案する。
この同定を達成するために、非線形復元力である寄与は、当初はガウス過程としてモデル化される。
ガウス過程は状態空間モデルに変換され、システムの線形動的成分と結合される。
そして、フィルタリングおよび平滑化分布を推定することにより、システムの内部状態と非線形復元力とを抽出することができる。
これらの状態を持つ場合、非線形モデルを構築することができる。
この手法はシミュレートされたケーススタディと実験的なベンチマークデータセットの両方で有効であることが示されている。
関連論文リスト
- Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
本研究では,非線形(時空間)力学の擬似的支配方程式を,定量化された不確実性を伴うスパースノイズデータから同定する枠組みを開発した。
提案アルゴリズムは、正準常微分方程式と偏微分方程式によって制御される複数の非線形力学系に対して評価される。
論文 参考訳(メタデータ) (2022-10-14T20:37:36Z) - Learning Reduced Nonlinear State-Space Models: an Output-Error Based
Canonical Approach [8.029702645528412]
非線形挙動を持つ動的システムのモデリングにおけるディープラーニングの有効性について検討する。
3つの非線形系を同定する能力を示す。
シミュレーションで生成したテストデータと,無人航空機飛行計測の現実的データセットを用いて,オープンループ予測の評価を行った。
論文 参考訳(メタデータ) (2022-04-19T06:33:23Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
我々は任意の強い相互作用や非線形性を持つクラスマルコフ散逸系(英語版)のリウヴィリアンを解析的に対角化する。
これにより、フルダイナミックスと散逸スペクトルの正確な記述が可能になる。
我々の手法は他の様々なシステムに適用でき、複雑な駆動散逸量子系の研究のための強力な新しいツールを提供することができる。
論文 参考訳(メタデータ) (2021-09-27T17:45:42Z) - Dynamical symmetry breaking through AI: The dimer self-trapping
transition [0.0]
物理を動機とした機械学習モデルを用いて、元の動的自己トラッピング遷移をキャプチャできることが示されている。
非退化非線形二量体の場合、この結果の爆発はより一般的な力学に関する追加情報を与える。
論文 参考訳(メタデータ) (2021-09-20T15:31:35Z) - Learning Nonlinear Waves in Plasmon-induced Transparency [0.0]
プラズモン誘起透過性メタマテリアルシステムにおける非線形ソリトンの複雑な伝播を予測するためのリカレントニューラルネットワーク(RNN)アプローチを検討する。
我々は,長期記憶(LSTM)人工ニューラルネットワークによるシミュレーションと予測において,結果の顕著な一致を証明した。
論文 参考訳(メタデータ) (2021-07-31T21:21:44Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
有限非線形力学系を無限線型力学系(埋め込み)にマッピングする方法を述べる。
次に、有限線型系 (truncation) による結果の無限線型系を近似するアプローチを検討する。
論文 参考訳(メタデータ) (2020-12-12T00:01:10Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
本稿では,非線形力学系のノイズ,スパース,不規則な観測からベイズ系を同定する機械学習フレームワークを提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
スパーシティプロモーティングプリエントを用いることで、下層の潜在力学に対する解釈可能かつ同義的な表現の発見が可能になる。
論文 参考訳(メタデータ) (2020-04-15T00:51:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。