論文の概要: Fast Rank-1 NMF for Missing Data with KL Divergence
- arxiv url: http://arxiv.org/abs/2110.12595v1
- Date: Mon, 25 Oct 2021 02:05:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 14:42:23.702131
- Title: Fast Rank-1 NMF for Missing Data with KL Divergence
- Title(参考訳): KL差分データに対するFast Rank-1 NMF
- Authors: Kazu Ghalamkari, Mahito Sugiyama
- Abstract要約: A1GMは入力行列から再構成されたランク1行列へのKLの発散を最小限にする。
A1GMは、競合する再構成誤差を持つ勾配法よりも効率的であることを示す。
- 参考スコア(独自算出の注目度): 8.020742121274417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a fast non-gradient based method of rank-1 non-negative matrix
factorization (NMF) for missing data, called A1GM, that minimizes the KL
divergence from an input matrix to the reconstructed rank-1 matrix. Our method
is based on our new finding of an analytical closed-formula of the best rank-1
non-negative multiple matrix factorization (NMMF), a variety of NMF. NMMF is
known to exactly solve NMF for missing data if positions of missing values
satisfy a certain condition, and A1GM transforms a given matrix so that the
analytical solution to NMMF can be applied. We empirically show that A1GM is
more efficient than a gradient method with competitive reconstruction errors.
- Abstract(参考訳): 入力行列から再構成された rank-1 行列への kl の発散を最小化する a1gm と呼ばれる欠落データに対する rank-1 非負行列因子分解 (nmf) の高速非勾配法を提案する。
本手法は,NMF の多種多元行列分解法 (NMMF) の最適ランク1非負行列分解法 (NMMF) の解析的閉形式を新たに発見したことに基づく。
NMMF は、不足値の位置が一定の条件を満たす場合、NMF を正確に解き、A1GM は与えられた行列を NMMF に対する解析解を適用することができるように変換する。
A1GMは競合する再構成誤差を持つ勾配法よりも効率的であることを示す。
関連論文リスト
- Sum-of-norms regularized Nonnegative Matrix Factorization [1.5484595752241124]
本研究では、非負行列分解(NMF)を解きながら、そのようなランクを推定する近似法を提案する。
SON(sum-of-norm)は、一対の類似性を促進する群ラッソ構造であり、ランクが過大評価される因子行列のランクを減少させる。
SON-NMFはデータから自動的にランクを推定でき、ランク不足のデータ行列に対処でき、弱い成分を小さなエネルギーで検出できる。
論文 参考訳(メタデータ) (2024-06-30T14:16:27Z) - Large-scale gradient-based training of Mixtures of Factor Analyzers [67.21722742907981]
本稿では,勾配降下による高次元学習を効果的に行うための理論解析と新しい手法の両立に寄与する。
MFAトレーニングと推論/サンプリングは,学習終了後の行列逆変換を必要としない精度行列に基づいて行うことができることを示す。
理論解析と行列の他に,SVHNやMNISTなどの画像データセットにMFAを適用し,サンプル生成と外乱検出を行う能力を示す。
論文 参考訳(メタデータ) (2023-08-26T06:12:33Z) - Unitary Approximate Message Passing for Matrix Factorization [90.84906091118084]
行列分解 (MF) を一定の制約で考慮し, 様々な分野の応用を見いだす。
我々は,効率の良いメッセージパッシング実装であるUAMPMFを用いて,MFに対するベイズ的アプローチを開発する。
UAMPMFは、回復精度、ロバスト性、計算複雑性の観点から、最先端のアルゴリズムを著しく上回ることを示す。
論文 参考訳(メタデータ) (2022-07-31T12:09:32Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
非負の行列因子化(NMF)は、非負のデータを部品ベースの表現で表すことの有効性から、近年広く研究されている。
そこで本研究では,係数行列に対数ノルムを課した新しいNMF法を提案する。
提案手法のロバスト性を高めるために,$ell_2,log$-(pseudo) ノルムを新たに提案した。
論文 参考訳(メタデータ) (2022-04-22T11:38:10Z) - Co-Separable Nonnegative Matrix Factorization [20.550794776914508]
非負行列分解(NMF)はパターン認識の分野で人気があるモデルである。
我々はこのNMFをCoS-NMF(CoS-NMF)と呼ぶ。
CoS-NMFの最適化モデルを提案し,その解法に置換高速勾配法を適用した。
論文 参考訳(メタデータ) (2021-09-02T07:05:04Z) - Entropy Minimizing Matrix Factorization [102.26446204624885]
NMF(Nonnegative Matrix Factorization)は、広く使用されているデータ分析技術であり、多くの実際のタスクで印象的な結果をもたらしました。
本研究では,上述の問題に対処するために,EMMF (Entropy Minimizing Matrix Factorization framework) を開発した。
通常、外れ値が通常のサンプルよりもはるかに小さいことを考えると、行列分解のために新しいエントロピー損失関数が確立される。
論文 参考訳(メタデータ) (2021-03-24T21:08:43Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
シンメトリー非負係数行列(SNMF)は、データクラスタリングの強力な方法であることを示した。
より良いクラスタリング結果を求めるアンサンブルクラスタリングにインスパイアされた,自己監視型SNMF(S$3$NMF)を提案する。
SNMFのコード特性に対する感度を、追加情報に頼らずに活用しています。
論文 参考訳(メタデータ) (2021-03-02T12:47:40Z) - Algorithms for Nonnegative Matrix Factorization with the
Kullback-Leibler Divergence [20.671178429005973]
Kullback-Leibler (KL) の発散は、非負行列分解(NMF)の最も広く使われている目的関数の1つである。
目的関数の非増加を保証する3つの新しいアルゴリズムを提案する。
我々は、KL NMFアルゴリズムの性能に関する総合的な画像を提供するために、広範な数値実験を行う。
論文 参考訳(メタデータ) (2020-10-05T11:51:39Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
ロバスト低ランク行列補完(RMC)は、コンピュータビジョン、信号処理、機械学習アプリケーションのために広く研究されている。
この問題は、部分的に観察された行列を低ランク行列とスパース行列の重ね合わせに分解することを目的とした。
RMCに取り組むために広く用いられるアプローチは、低ランク行列の核ノルム(低ランク性を促進するために)とスパース行列のl1ノルム(空間性を促進するために)を最小化する凸定式化を考えることである。
本稿では、近年のローワークの動機付けについて述べる。
論文 参考訳(メタデータ) (2020-08-18T04:46:22Z) - Sparse Separable Nonnegative Matrix Factorization [22.679160149512377]
非負行列分解(NMF)の新しい変種を提案する。
分離性は、第1NMF因子の列が入力行列の列に等しいのに対して、スパース性は第2NMF因子の列がスパースであることが要求される。
雑音のない環境では、軽微な仮定の下で、我々のアルゴリズムが真に根底にある情報源を復元することを証明する。
論文 参考訳(メタデータ) (2020-06-13T03:52:29Z) - Fast Rank Reduction for Non-negative Matrices via Mean Field Theory [5.634825161148483]
構造標本空間上の対数線形モデルを用いて行列をモデル化することにより、平均場近似としてランクの減少を定式化する。
提案手法は,NMFとNMFの変種であるlraNMFよりも高速であり,合成および実世界のデータセット上での競合的低ランク近似誤差を実現することを実証的に示す。
論文 参考訳(メタデータ) (2020-06-09T14:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。