論文の概要: `Next Generation' Reservoir Computing: an Empirical Data-Driven
Expression of Dynamical Equations in Time-Stepping Form
- arxiv url: http://arxiv.org/abs/2201.05193v1
- Date: Thu, 13 Jan 2022 20:13:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-18 01:16:35.696155
- Title: `Next Generation' Reservoir Computing: an Empirical Data-Driven
Expression of Dynamical Equations in Time-Stepping Form
- Title(参考訳): 次世代」貯留層計算:時間ステップ形式における動的方程式の経験的データ駆動式
- Authors: Tse-Chun Chen, Stephen G. Penny, Timothy A. Smith, Jason A. Platt
- Abstract要約: 非線形ベクトル自己回帰に基づく次世代貯水池計算を適用し, 単純な力学系モデルをエミュレートする。
また、この手法はデータから直接高次数値スキームを生成するために拡張可能であることも示している。
トレーニングセットにおけるノイズの存在と時間的空間性の影響について検討し, より現実的な応用のために本手法の可能性を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Next generation reservoir computing based on nonlinear vector autoregression
(NVAR) is applied to emulate simple dynamical system models and compared to
numerical integration schemes such as Euler and the $2^\text{nd}$ order
Runge-Kutta. It is shown that the NVAR emulator can be interpreted as a
data-driven method used to recover the numerical integration scheme that
produced the data. It is also shown that the approach can be extended to
produce high-order numerical schemes directly from data. The impacts of the
presence of noise and temporal sparsity in the training set is further examined
to gauge the potential use of this method for more realistic applications.
- Abstract(参考訳): 非線形ベクトル自己回帰 (nvar) に基づく次世代貯留層計算を用いて, 単純力学系モデルをエミュレートし, euler や 2^\text{nd}$order runge-kutta などの数値積分法と比較した。
NVARエミュレータは,データを生成した数値積分スキームを復元するためのデータ駆動方式として解釈可能である。
また,データから直接高次数値スキームを生成する手法を拡張できることを示した。
学習セットにおける雑音の存在と時間的スパーシティの影響を更に検討し,本手法のより現実的な応用への可能性を評価する。
関連論文リスト
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Extrapolating tipping points and simulating non-stationary dynamics of
complex systems using efficient machine learning [2.44755919161855]
本稿では,非線形力学系の分岐挙動を外挿する次世代貯水池計算に基づく,完全データ駆動型機械学習アルゴリズムを提案する。
こうすることで、目に見えないパラメータ領域のポストタイピングポイントダイナミクスをシミュレートすることができる。
論文 参考訳(メタデータ) (2023-12-11T10:37:28Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Dynamic Bayesian Learning for Spatiotemporal Mechanistic Models [5.658544381300127]
我々は、力学力学モデルのベイズ学習のためのアプローチを開発する。
このような学習は、任意の入力からシステムの出力を効率的に補間できる力学系の統計的エミュレーションで構成されている。
論文 参考訳(メタデータ) (2022-08-12T23:17:46Z) - Learning and Inference in Sparse Coding Models with Langevin Dynamics [3.0600309122672726]
本稿では確率的潜在変数モデルで推論と学習が可能なシステムについて述べる。
ランゲヴィン力学を用いて潜伏変数を推論する連続時間方程式を導出することにより、スパース符号化モデルのこのアイデアを実証する。
ランゲヴィン力学は、L1ノルムが小さいのに対して、潜伏変数をゼロにすることを推奨する'L0スパース'系において、後続分布からサンプリングする効率的な手順をもたらすことを示す。
論文 参考訳(メタデータ) (2022-04-23T23:16:47Z) - Extracting Stochastic Governing Laws by Nonlocal Kramers-Moyal Formulas [3.8325907381729496]
我々は、(ガウス)ブラウン運動と(非ガウス)レヴィ運動の両方を用いて、規制法則を抽出するデータ駆動アプローチを提案する。
このアプローチがL'evy運動を伴う微分方程式を学習できることを実証する。
論文 参考訳(メタデータ) (2021-08-28T04:56:51Z) - Extracting Governing Laws from Sample Path Data of Non-Gaussian
Stochastic Dynamical Systems [4.527698247742305]
我々は、利用可能なデータから非ガウスL'evy雑音の方程式を推定し、動的挙動を合理的に予測する。
理論的枠組みを確立し、非対称なL'evyジャンプ測度、ドリフト、拡散を計算する数値アルゴリズムを設計する。
この方法は、利用可能なデータセットから規制法則を発見し、複雑なランダム現象のメカニズムを理解するのに有効なツールとなる。
論文 参考訳(メタデータ) (2021-07-21T14:50:36Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
局所ガウス過程は、ガウス過程の回帰に基づく新しい、計算効率の良いモデリング手法である。
入力空間の反復的データ駆動分割により、実際にはトレーニングポイントの総数において、サブ線形計算複雑性が達成される。
実世界のデータセットに対する数値的な評価は、予測と更新の速度だけでなく、精度の点で他の最先端手法よりも有利であることを示している。
論文 参考訳(メタデータ) (2020-06-16T18:43:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。